Exposure Value – What does it mean?

Exposure Value (Ev) – what does Ev mean?

I get asked this question every now and again because I frequently use it in the description annotations of image shot data here on the blog.

And I have to say from the outset the Exposure Value comes in two flavours – relative and absolute – and here I’m only talking mainly about the former.

So, let’s start with basic exposure.

Exposure can be thought of as Intensity x Time.

Intensity is controlled by our aperture, and time is controlled by our shutter speed.

This image was shot at 0.5sec (time), f11 (intensity) and ISO 100.

exposure value

We can think of the f11 intensity of light striking the sensor for 0.5sec as a ‘DOSAGE’ – and if that dosage results in the desired scene exposure then that dosage can be classed as the exposure value.

Let’s consider two exposure settings – 0.5sec at f11 ISO100 and 1sec at f16 ISO 100.

Technically speaking they are two different exposures, but BOTH result in the same light dosage at the sensor.  The second exposure is TWICE the length of time but HALF the intensity.

So both exposures have the same Exposure Value or Ev.

The following exposure of the same scene is 1sec at f11 ISO 100:

exposure value

The image was shot at the same intensity (f11) but the shutter speed (time) was twice as long, and so the dosage was doubled.  Double the dose = +1Ev!

And in this version the exposure was 0.25sec at f11 ISO 100:

exposure value

Here the light dosage at the sensor is HALF that of the correct/desired exposure because the time factor was halved while using the same intensity.

So half the dose = -1Ev!

Now some of you will be thinking that -1Ev is 1 stop under exposure – and you’d be right!

But Ev, or exposure value, is just a cleaner way of thinking about exposure because it doesn’t tie you to any specific camera setting – and it’s more easily transferable between cameras.

What Do I Mean by that?

Example – If I use say a 50mm prime lens on my Nikon D800E with the metering in matrix mode, ISO 100 and f14 I might get a metered exposure shutter speed of 1/10th of a second.

But if I replace the D800E with a D4 set at 100 ISO, matrix and f14 I’ll guarantee the metered shutter speed requirement will be either 1/13 or 1/15th of a second.

The D4 meters between -1/3Ev and -2/3Ev (in other words 1/2 stop) faster/brighter than the D800E when fitted with the same lens and set to the same aperture and ISO, and shooting exactly the same framing/composition.

Yet the ‘as metered’ shots from both cameras look pretty much the same with respect to light dosage – exposure value.

Exposure Settings Don’t Transfer between camera models very well, because the meter in a camera is calibrated to the response curve of the sensor.

A Canon 1DX Mk2 will usually generate a evaluative metered shutter speed 1/3rd of a stop faster than a matrix metered Nikon D4S for the same given focal length, aperture and ISO setting.

Both setups ‘as metered’ shots will look pretty much the same, but transposing the Canon settings to the Nikon will result in -1/3 stop under exposure – which on a digital camera is definitely NOT the way to go!

‘As Metered’ can be regarded as +/-0Ev for any camera (Note: this does NOT mean Ev=0!)

Any exposure compensation you use in order to achieve the ‘desired’ exposure on the other hand can be thought of as ‘metered + or – xEv’.

exposure compensation

Shot with the D4 plus 70-200 f2.8@70mm in manual exposure mode, 1/2000th sec, f8 and ISO 400 using +2/3Ev compensation.

The matrix metered exposure indicated by the camera before the exposure value compensation was 1/3200th – this would have made the Parasitic Jaeger (posh name for an Arctic Skua!) too dark.

A 1DXMk2 using the corresponding lens and focal length, f8, ISO 400 and evaluative metering would have wanted to generate a shutter speed of at least 1/4000th sec without any exposure compensation, and 1/2500th with +2/3Ev exposure compensation.

And if shot at those settings the Canon image would look pretty much like the above.

But if the Nikon D4 settings had been fully replicated on the Canon then the shot would be between 1/3 and 1/2 stop over exposed, risking ‘blowing’ of some of the under-wing and tail highlights.

So the simple lesson here is don’t use other photographers settings – they never work unless you’re on identical gear! 

But if you are out with me and I tell you “matrix/evaluative plus 1Ev” then your exposure will have pretty much the same ‘light dosage’ as mine irrespective of you using the right shutter speed, aperture or ISO for the job or not!

I was brought up to think in terms of exposure value and Ev units, and to use light meters that had Ev scales on them – hell, the good ones still have ’em!

If you look up the ‘tech-specs’ for your camera you’ll find that metering sensitivity is normally quoted as an Ev range.  And that’s not all – your auto focus may well have a low light Ev limited quoted too!

To all intents and purposes Ev units and your more familiar ‘f-stops’ amount to one and the same thing.

As we’ve seen before, different exposures in terms of intensity and time can have the same exposure value, and all Ev is concerned with is the cumulative outcome of our shutter speed, aperture and ISO choices.

Most of you will take exposures at ‘what the camera meter says’ settings, or you will use the meter indicated exposure as a baseline and modify the exposure settings with either positive or negative ‘weighting’ via your exposure compensation dial.

That’s Ev compensation relative to your meters baseline.

But have you ever asked yourself just how accurate your camera meter is?

So I’ve just stepped outside my front door and taken these two frames:

exposure value

EV=15/Sunny 16 Rule 1/100th sec, f16, 100 ISO – click to view large.

exposure value

Matrix Metering, no exposure compensation 1/200th sec, f16, ISO 100 – click to view large

These two raw files have been brought into Lightroom and THE ONLY adjustment has been to change the profile from Adobe Color to Camera Neutral.

Members of my subscription site can download the raw files and see for themselves.

Look at the histogram in both images!

The exposure for xxx164.NEF (the top image) is perfection personified while xxx162.NEF is under exposed by ONE WHOLE STOP – why?

Because the bottom image has been shot at the camera-specified matrix metered exposure, while the top image has been shot using the good old ‘Sunny 16 Rule’ that’s been around since God knows when!

“Yeah, but I could just use the shadow recovery slider on the bottom shot Andy….”  Yes, you could, if you wanted to be an idle tit, and even then the top image would still be better because there’s no ‘recovery’ being used on it in the first place.  Remember, more work at the camera means less work in processing!

Recovery of either shadows or highlights is ‘poor form’ and no substitute for correct exposure in the first place. Digital photography is just like shooting colour transparency film – you need to ‘peg the highlights’ as highlights BUT without over exposing them and causing them to ‘blow’.

In other words – ETTR, expose to the right!

And seeing as your camera meter wants to turn everything into midtone grey shite it’s the very last thing you should ever allow to dictate your final exposure settings – as the two images above prove beyond argument.

And herein lies the problem.

Even if you use the spot metering function the meter will read the brightness of what is covered by the ‘spot’ and then calculate the exposure required to expose that tonal brightness AS A MID TONE GREY.

That’s all fine ‘n dandy – if the metered area is actually an exact mid tone.  But what if you were metering a highlight?

Then the metered exposure would want to expose said highlight as a midtone and the overall highlight exposure would be far too dark.  And you can guess what would happen if you trusted your meter to spot-read a shadow.

A proper hand-held spot meter has an angle of view or AoV of 1 degree.

Your camera spot meter angle of view is dictated by the focal length of the lens you have fitted.

On my D800E for example, I need to have a lens AoV of around 130mm focal length equivalent for my spot to cover 1 degree, because the ‘spot’ is 4mm in diameter – total stupidity.

But it does function fairly well with wider angle lenses and exposure calculations when used in conjunction with the live view histogram.  And that will be subject of my next blog post – or perhaps I’ll do a video for YouTube!

So I doubt this blog post about relative exposure compensation is going to light your world on fire – it began as an explanation to a recurring question about my exif annotation habits and snowballed somewhat from there!

But I’ll leave you with this little guide to the aforementioned Sunny 16 Rule, which has been around since Noah took up boat-building:

To use this table just set your ISO to 100.

Your shutter speed needs to be the reciprocal of your ISO – in other words 1/100 sec for use with the stated aperture values:

Aperture Lighting conditions Shadow PROPERTIES
f/22* Snow/sand Dark with sharp edges
f/16 Sunny Distinct
f/11 Slight overcast Soft around edges
f/8 Overcast Barely visible
f/5.6** Heavy overcast No shadows
f/4 Open shade/sunset No shadows

* – I would not shoot at f22 because of diffraction – try 1/200th f16

** – let’s try some cumulative Ev thinking here and go for more depth of field using f11 and sticking with 100 ISO. -2Ev intensity (f5.6 to f11) requires +2Ev on time, so 1/100th sec becomes 1/25th sec.

Over the years I’ve taken many people out on photo training days, and a lot of them seem to think I’m some sort of magician when I turn their camera on, switch it manual, dial in a couple of settings and produce a half decent image without ever looking at the meter on their camera.

It ain’t magic – I just had this table burnt into the back of my eyeballs years ago.

Works a charm – if you can do the mental calculations in your head, and that’s easy with practice.  The skill is in evaluating your shooting conditions and relating them to the lighting and shadow descriptions.

And here’s a question for you; we know our camera meter wants to ‘peg’ what it’s measuring as a midtone irrespective of whether it’s measuring a midtone or not.  But what do you think the Sunny 16 Rule is ‘pegging’ and where is it pegging it on the exposure curve?

If you can answer that question correctly then the other flavour of exposure value – absolute – might well be of distinct interest to you!

Give it a try, and if you use it correctly you’ll never be more than 1/3rd of a stop out, if that.  Then you can go and unsubscribe from all those twats on YouTube who told you it was out-dated and defunct or never told you about it in the first place!

I hope you’ve found the information in this post useful.

I don’t monetize my YouTube videos or fill my blog posts with masses of affiliate links, and I rely solely on my patrons to help cover my time and server costs. If you would like to help me to produce more content please visit my Patreon page on the button above.

Many thanks and best light to you all.

Astro Landscape Photography

Astro Landscape Photography

Astro Landscape Photography

One of my patrons, Paul Smith, and I ventured down to Shropshire and the spectacular quartsite ridge of The Stiperstones to get this image of the Milky Way and Mars (the large bright ‘star’ above the rocks on the left).

I always work the same way for astro landscape photography, beginning with getting into position just before sunset.

Using the PhotoPills app on my phone I can see where the milky way will be positioned in my field of view at the time of peak sky darkness.  This enables me to position the camera exactly where I want it for the best composition.

The biggest killer in astro landscape photography is excessive noise in the foreground.

The other problem is that foregrounds in most images of this genre are not sharp due to a lack of depth of field at the wide apertures you need to shoot the night sky at – f2.8 for example.

To get around this problem we need to shoot a separate foreground image at a lower ISO, a narrower aperture and focused closer to the camera.

Some photographers change focus, engage long exposure noise reduction and then shoot a very long exposure.  But that’s an eminently risky thing to do in my opinion, both from a technical standpoint and one of time – a 60 minute exposure will take 120 minutes to complete.

The length of exposure is chosen to allow the very low photon-count from the foreground to ‘build-up’ on the sensor and produced a usable level of exposure from what little natural light is around.

From a visual perspective, when it works, the method produces images that can be spectacular because the light in the foreground matches the light in the sky in terms of directionality.

Light Painting

To get around the inconvenience of time and super-long exposures a lot of folk employ the technique of light painting their foregrounds.

Light painting – in my opinion – destroys the integrity of the finished image because it’s so bloody obvious!  The direction of light that’s ‘painted’ on the foreground bares no resemblance to that of the sky.

The other problem with light painting is this – those that employ the technique hardly ever CHECK to see if they are in the field of view of another photographer – think about that one for a second or two!

My Method

As I mentioned before, I set up just before sunset.  In the shot above I knew the milky way and Mars were not going to be where I wanted them until just after 1am, but I was set up by 9.20pm – yep, a long wait ahead, but always worth the effort.

Astro Landscape Photography

As we move towards the latter half of civil twilight I start shooting my foreground exposure, and I’ll shoot a few of these at regular intervals between then and mid nautical twilight.

Because I shoot raw the white balance set in camera is irrelevant, and can be balanced with that of the sky in Photoshop during post processing.

The key things here are that I have a shadowless even illumination of my foreground which is shot at a low ISO, in perfect focus, and shot at say f8 has great depth of field.

Once deep into blue hour and astronomical twilight the brighter stars are visible and so I now use full magnification in live view and focus on a bright star in the cameras field of view.

Then it’s a waiting game – waiting for the sky to darken to its maximum and the Milky Way to come into my desired position for my chosen composition.

Shooting the Sky

Astro landscape photography is all about showing the sky in context with the foreground – I have absolutely ZERO time for those popular YouTube photographers who composite a shot of the night sky into a landscape image shot in a different place or a different angle.

Good astro landscape photography HAS TO BE A COMPOSITE though – there is no way around that.

And by GOOD I mean producing a full resolution image that will sell through the agencies and print BIG if needed.

The key things that contribute to an image being classed good in my book are simple:

  • Pin-point stars with no trailing
  • Low noise
  • Sharp from ‘back’ to ‘front’.

Pin-points stars are solely down to correct shutter speed for your sensor size and megapixel count.

Low noise is covered by shooting a low ISO foreground and a sequence of high ISO sky images, and using Starry Landscape Stacker on Mac (Sequator on PC appears to be very similar) in conjunction with a mean or median stacking mode.

Further noise cancelling is achieved but the shooting of Dark Frames, and the typical wide-aperture vignetting is cancelled out by the creation of a flat field frame.

And ‘back to front’ image sharpness should be obvious to you from what I’ve already written!

So, I’ll typically shoot a sequence of 20 to 30 exposures – all one after the other with no breaks or pauses – and then a sequence of 20 to 30 dark frames.

Shutter speeds usually range from 4 to 6 seconds

Watch this video on my YouTube Channel about shutter speed:

Best viewed on the channel itself, and click the little cog icon to choose 1080pHD as the resolution.

Putting it all Together

Shooting all the frames for astro landscape photography is really quite simple.

Putting it all together is fairly simple and straight forward too – but it’s TEDIOUS and time-consuming if you want to do it properly.

The shot above took my a little over 4 hours!

And 80% of it is retouching in Photoshop.

I produce a very extensive training title – Complete Milky Way Photography Workflow – with teaches you EVERYTHING you need to know about the shooting and processing of astro landscape photography images – you can purchase it here – and if you use the offer code MWAY15 at the checkout you’ll get £15 off the purchase price.

But I wanted to try Raw Therapee for this Stiperstones image, and another of my patrons – Frank – wanted a video of processing methodology in Raw Therapee.

Easier said than done, cramming 4 hours into a typical YouTube video!  But after about six attempts I think I’ve managed it, and you can see it here, but I warn you now that it’s 40 minutes long:

Best viewed on the channel itself, and click the little cog icon to choose 1080pHD as the resolution.

I hope you’ve found the information in this post useful, together with the YouTube videos.

I don’t monetize my YouTube videos or fill my blog posts with masses of affiliate links, and I rely solely on my patrons to help cover my time and server costs.  If you would like to help me to produce more content please visit my Patreon page on the button above.

Many thanks and best light to you all.

ETTR Processing in Lightroom

ETTR Processing in Lightroom

When we shoot ETTR (expose to the right) in bright, harsh light, Lightroom can sometimes get the wrong idea and make a real ‘hash’ of rendering the raw file.

Sometimes it can be so bad that the less experienced photographer can get the wrong impression of their raw file exposure – and in some extreme cases they may even ‘bin’ the image thinking it irretrievably over exposed.

I’ve just uploaded a video to my YouTube channel which shows you exactly what I’m talking about:

The image was shot by my client and patron Paul Smith when he visited the Mara back in October last year,  and it’s a superb demo image of just how badly Lightroom can demosaic a straight forward +1.6 Ev ETTR shot.

Importing the raw file directly into Lightroom gives us this:

ETTR

But importing the raw file directly into RawTherapee with no adjustments gives us this:

ETTR

Just look at the two histogram versions – Lightroom is doing some crazy stuff to the image ‘in the background’ as there are ZERO develop settings applied.

But if you watch the video you’ll see that it’s quite straight forward to regain all that apparent ‘blown detail’.

And here’s the important bit – we do so WITHOUT the use of the shadow or highlight recovery sliders.  Anyone who has purchased my sharpening videos HERE knows that those two sliders can VERY EASILY cause undesirable ‘pseudo-sharpening’ halos, and they should only be used with caution.

ETTR

The way I process this +1.6 stop ETTR exposure inside Lightroom has revealed all the superb mid tone detail and given us a really good image that we could take into Photoshop and improve with some precision localized adjustments.

So don’t let Lightroom control you – you need to control IT!

Thanks for reading and watching.

You can also view this post on the free section of my Patreon pages HERE

If you feel this article and video has been beneficial to you and would like to see more per week, then supporting my Patreon page for as little as $1 per month would be a massive help.  Thanks everyone!

 

Adobe Lightroom Classic and Photoshop CC 2018 tips

Adobe Lightroom Classic and Photoshop CC 2018 tips – part 1

So, you’ve either upgraded to Lightroom Classic CC and Photoshop CC 2018, or you are thinking doing so.

Well, here are a couple of things I’ve found – I’ve called this part1, because I’m sure there will be other problems/irritations!

Lightroom Classic CC GPU Acceleration problem

If you are having problems with shadow areas appearing too dark and somewhat ‘chocked’ in the develop module – but things look fine in the Library module – then just follow the simple steps in the video above and TURN OFF GPU Acceleration in the Lightroom preferences panel under the performance tab.

Adobe Lightroom Classic and Photoshop CC 2018 tips

Turn OFF GPU Acceleration

UPDATE: I have subsequently done another video on this topic that illustrates the fact that the problem did not exist in Lr CC 2015 v.12/Camera Raw v.9.12

In the new Photoshop CC 2018 there is an irritation/annoyance with the brush tool, and something called the ‘brush leash’.

Now why on earth you need your brush on a leash God ONLY KNOWS!

But the brush leash manifests itself as a purple/magenta line that follows your brush tool everywhere.

You have a smoothness slider for your brush – it’s default setting is 10%.  If we increase that value then the leash line gets even longer, and even more bloody irritating.

And why we would need an indicator (which is what the leash is) of smoothness amount and direction for our brush strokes is a bit beyond me – because we can see it anyway.

So, if you want to change the leash length, use the smoothing slider.

If you want to change the leash colour just go to Photoshop>Preferences>Cursors

Adobe Lightroom Classic and Photoshop CC 2018 tips

Here, you can change the colour, or better still, get rid of it completely by unticking the “show brush leash while smoothing” option.

So there are a couple of tips from my first 24 hours with the latest 2018 ransom ware versions from Adobe!

But I’m sure there will be more, so stay tuned, and consider heading over to my YouTube channel and hitting the subscribe button, and hit the ‘notifications bell’ while you’re at it!

Become a patron from as little as $1 per month, and help me produce more free content.

Patrons gain access to a variety of FREE rewards, discounts and bonuses.

 

Irix Edge Filters

Irix Edge Filters

A few weeks ago, Irix dropped me a set of their Edge 95mm screw-in filters to try on their fabulous 15mm Blackstone lens.

Irix Edge Filters

Now before we go any further, I have to say, that filters for landscape photography can represent something of a bottomless pit of expenditure in your photography gear.

I see folk with vast numbers of filters; NDs, grad NDs, tint and temp grads, fogs and soft focus filters and all sorts of exotic bits of glass and acrylic to stick on the front of their superb (and sometimes not so superb) landscape lenses.

Some of those same folk then look inside my bag in horror when they see that I only carry 3 filters – a 10 stop ND, 6 stop ND and polarizer.

I gave up using ND grads years ago, simply because they are time-consuming, and because if your horizon is not perfectly flat they will always effect the exposure of your middle to far foreground in some way or other.

For me, I find it far faster to shoot a bracketed sequence.

When your are shooting under very transient light conditions, such as sunset and twilight, time spent choosing and lining up a grad ND is time lost.

Followers of this blog will know that I have Lee SW150 and Lee 100 systems, both with 10 stop and 6 stop NDs and a polariser – the SW150 a circular, and the 100 system is a linear.  I’d have linear for the 150 system if they made one, simply on the grounds that they are normally cheaper – and I’m a tight-ass cheapskate!

When Irix sent the 15mm Blackstone for review, I purchased the Lee SW150 adapter ring for 95mm thread lenses – it works well and I can’t fault it.

But, I had the insanely expensive SW150 system holder and glass filters ALREADY, because I used them on the 14-24mm f2.8 Nikkor, and sometimes on my beloved Zeiss 21mm.

When I originally reviewed the 15mm Irix Blackstone there was really no other option for filtration.

But this new range of 95mm Irix Edge Filters now means that landscape photographers can have the necessary filtration without having to go with any form of 150mm filter system.

The 95mm Irix Edge Filters range.

Irix Edge Filters

The packaging is robust and keeps the filters safe.  The card outer sleeve tells you what filter is inside,  though if you remove/loose it then you have to open the case and examine the edge of the filter to see the same information – it’s the only niggle I have, and it’s a minor one and certainly not a deal-breaker.

Though our Richard might argue that point after sprinting along the side of Howden reservoir after one that blew away in the wind yesterday!

But it would be nice of Irix to put the information inside the case so you could see it without faffing around – it all saves time, and time can be of the essence!

The filter range consists of:

A UV/Lens Protect – you all know my attitude to these by now!

Circular Polariser – this is mounted in a low profile 5mm frame with knurled edges, and has a double-sided anti-reflective nano coating.  AND – it is front-threaded to allow for a certain amount of stacking with other filters in the range – more on that shortly.

ND 8, 32, 128 & 1000 Neutral Density – these ND filters are all built in a 3.5mm metal frame, so are super low-profile.  They are all front-threaded and have the Irix double-sided anti reflective coatings.

ND filter terminology:

This seems to confuse a lot of people, which I suppose is understandable because different manufacturers persist in using different, and in the case of Lee for instance, MIXED terminologies.

So let’s try and break this down for you.

A one stop drop in exposure results in HALF the amount of light reaching the sensor/film plane.

A half is represented by the fraction ‘1/2’.

Irix, and others, take the denominator (bottom number of the fraction), stick the letters N & D in front of the said denominator, and now we have the filter value of ND2.

So, an ND2 neutral density filter is a ONE STOPPER – to use one particular Lee parlance!

If we reduce our exposure by 3 stops (that’s half of a half of a half, in other words 1/8th) then an ND8 filter is a THREE STOPPER!

An ND32 is a FIVE STOPPER, and ND128 is a SEVEN STOPPER.

And finally, an ND1000 (which is actually an ND1024!) is a TEN STOPPER – of Lee Big Stopper fame.

However, an ND1000 (ND1024) can also be classed in the ‘X.Y’ system as ND3.0 – oh dear!

The ‘X.Y’ (x point y) system is most commonly encountered with ND Grads – for example the Lee Soft-edged ND Grad set featuring 0.3, 0.6 & 0.9 ND Grads.

A 0.3 ND is the same as an ND2 – a ONE STOPPER, a 0.6ND is a two stop or ND4 and a 0.9ND is a 3 stop or ND8 – don’t you just love it!!

So hopefully we’ve cleared any confusion over ND stop values, so let’s get back to the Irix Edge Filters and my thoughts on how they perform.

If you click this link HERE you will be taken to page where, if you scroll to the bottom, you can watch a video of me doing a couple of shots at Salford Quays the other day.  I didn’t have my glasses on for the ‘talk to the camera bit’ and so made a slight screw up when talking about the focus scales – watch it and you’ll see!  And I’ve been told that I must apologise for inferring that Salford Quays is in Manchester!

Anyway, here are the two shots we did in the video:

Irix Edge Filters

Media City Footbridge, Salford Quays.

Irix Edge Filters

Salford Quays, NOT in Manchester! Irix Edge Polariser stacked with the Irix Edge ND1000

The first image (Media City Footbridge) is shot with just the 95mm Irix Edge Filters circular polariser.

Conditions were vile with sun and rain in rapid succession and the shot will never win any prizes, but it does help show that the filter does not effect sharpness in the image, and is a lot more colour-neutral than a lot of CPLs out there on the market.

The second shot is with the ND1000 stacked on top of the CPL – and again there is no noticeable lack of sharpness.

When you stack the filters there IS a SMALL amount of vignetting as seen in the uncropped/unedited raw file below:

Irix Edge FiltersBut that’s easily taken care with a little bit of content aware fill in Photoshop, so you don’t HAVE to crop it out:

Irix Edge Filters

And just for reference, here’s the unfiltered scene:

Irix Edge Filters

God – how boring!

As a final testament to the stacked CPL + ND1000 Irix Edge Filters combo, here’s a shot from Howden Reservoir in the Peak District, taken yesterday directly into the teeth of ex-hurricane Ophelia:

Irix Edge Filters

Howden Reservoir during Ophelia.

If you look at the larger image, considering the fact that this is a 15 second exposure and that everything not nailed down is moving, then this image is plenty sharp enough – check out the fence lines on the hill, and the left tower of the dam in the distance.

Do NOT forget, this is a 15mm lens, not a more conventional 21mm to 24mm lens.

I could not pull this shot off with a Zeiss 15mm – no filters and bad edge performance.  And I couldn’t pull it off as easily with the Nikon 14-24mm because the filters would have been unshaded from the sunlight off to my front right.

I was asked a couple of weeks ago ‘how neutral are the Irix Edge Filters Andy’?

It turns out the person who asked me had just read about some U.S branded CPL and ND filters that are supposed to be the most color-neutral filters on the market.  This is also the same guy who still uses a Mark 1 Lee Big Stopper with its phenomenal blue/green cast.

“Do you ever change the colour balance, hue, saturation or luminance of any of your 8 colour channels in Lightroom, and the Basics Panel vibrance and saturation sliders?” I asked.

“Of course I do” came the reply.

“So why are you asking about filter neutrality then?” asks I.  This was followed by a long silence, then the penny dropped…!

Yes, we all want some degree of filter neutrality because it shortens our workflow; but please remember that we are not shooting archive.  We shoot creative imagery.  We make shots of ice bergs have a blue tint to emphasize the cold atmospheric of the image, and we invariably warm up and saturate certain areas of every sunset image we ever take.

So to a large degree, full neutrality of of our landscape filters is not required, as long as they are neutral enough NOT to exclude certain wavelengths/colours of light from our recorded raw files.

And yes, on the neutrality front, these Irix filters are very good.  The ND1000 is a little brown/warmish, but about 20% less so than the B&W screw in 10 stop I used to use – and no one ever complained about that filter.

I did a very ‘Heath Robinson’ test on the Irix 95mm CPL and got a colour shift of 2,7,5 RGB, but I’m just waiting for Paul Atkins to get back of his holiday so I can use his small colourimeter to check it more accurately – so PLEASE don’t go quoting that value or treating it as hard fact.

I’ll do an colour shift evaluation test on a range of filters at some date in the future, but for now all I can say is that I find the 95mm range of Irix Edge Filters exceptionally easy to work with both in terms of colour rendition and image sharpness.

So much so that I’m going to try and ‘bum’ an 82mm and 77mm step-down rings so I can use them on my Zeiss and Nikon lenses – apart from the 14-24 that is, which is now banished from my landscape and astro gear line-up for ever.

In the meantime, guess what? Irix have asked me to do a talk at Camera World Live on Saturday 28th October!

I’ll be doing my brief talk at 3pm and I’ll be on the Irix stand all day, so if you are there, just pop along for a chat or any advise you want.

Become a patron from as little as $1 per month, and help me produce more free content.

Patrons gain access to a variety of FREE rewards, discounts and bonuses.

Lightroom Dehaze – part 2

More Thoughts on The Lightroom Dehaze Control

With the dehaze adjustment in Lightroom (right) the sky and distant hills look good, but the foreground looks poor.

With the dehaze adjustment in Lightroom (right) the sky and distant hills look good, but the foreground looks poor.

In my previous post I did say I’d be uploading another video reflecting my thoughts on the Lightroom/ACR dehaze adjustment.

And I’ve just done that – AND I’ve made a concious effort to keep the ramblings down too..!

In the video I look at the effects of the dehaze adjustment on 4 very different images, and alternative ways of obtaining similar or better results without it.

You may see some ‘banding’ on the third image I work on – this is down to YouTube video compression.

In conclusion I have to say that I find the dehaze ‘tool’ something of an anti-climax if I’m honest. In fairly small positive amounts it can work exceptionally well in terms of a quick work flow on relatively short dynamic range images.  But I’m not a really big fan in general, and It’s possible to create pretty much the same adjustments using the existing Lightroom tools.

Become a patron from as little as $1 per month, and help me produce more free content.

Patrons gain access to a variety of FREE rewards, discounts and bonuses.

HDR in Lightroom CC (2015)

Lightroom CC (2015) – exciting stuff!

New direct HDR MERGE for bracketed exposure sequences inside the Develop Module of Lightroom CC 2015 – nice one Adobe!  I can see Eric Chan’s finger-prints all over this one…!

Andy Astbury,Lightroom,HDR,merge,photomerge, merge to HDR,high dynamic range,photography,Wildlife in Pixels

Twilight at Porth Y Post, Anglesey.

After a less than exciting 90 minutes on the phone with Adobe this vary morning – that’s about 10 minutes of actual conversation and an eternity of crappy ‘Muzak’ – I’ve managed to switch from my expensive old single app PsCC subscription to the Photography Plan – yay!

They wouldn’t let me upgrade my old stand-alone Lr4/Lr5 to Lr6 ‘on the cheap’ so now they’ve given me two apps for half the price I was paying for 1 – mental people, but I’ll not be arguing!

I was really eager to try out the new internal ‘Merge’ script/command for HDR sequences – and boy am I impressed.

I picked a twilight seascape scene I shot last year:

Andy Astbury,Lightroom,HDR,merge,photomerge, merge to HDR,high dynamic range,photography,Wildlife in Pixels

Click to view LARGER IMAGE.

I’ve taken a 6 shot exposure bracketed sequence of RAW files above, into the Develop Module of Lightroom CC and done 3 simple adjustments to all 6 under Auto Synch:

  1. Change camera profile from Adobe Standard to Camera Neutral.
  2. ‘Tick’ Remove Chromatic Aberration in the Lens Corrections panel.
  3. Change the colour temperature from ‘as shot’ to a whopping 13,400K – this neutralises the huge ‘twilight’ blue cast.

You have to remember that NOT ALL adjustments you can make in the Develop Module will carry over in this process, but these 3 will.

Andy Astbury,Lightroom,HDR,merge,photomerge, merge to HDR,high dynamic range,photography,Wildlife in Pixels

Click to view LARGER IMAGE.

Ever since Lr4 came out we have had the ability to take a bracketed sequence in Lightroom and send them to Photoshop to produce what’s called a ’32 bit floating point TIFF’ file – HDR without any of the stupid ‘grunge effects’ so commonly associated with the more normal styles of HDR workflow.

The resulting TIFF file would then be brought back into Lightroom where some very fancy processing limits were given to us – namely the exposure latitude above all else.

‘Normal’ range images, be they RAW or TIFF etc, have a potential 10 stops of exposure adjustment, +5 to -5 stops, both in the Basics Panel, and with Linear and Radial graduated filters.

But 32 bit float TIFFs had a massive 20 stops of adjustment, +10 to -10 stops – making for some very fancy and highly flexible processing.

Now the, what’s a ‘better’ file type than pixel-based TIFF?  A RAW file……

Andy Astbury,Lightroom,HDR,merge,photomerge, merge to HDR,high dynamic range,photography,Wildlife in Pixels

Click to view LARGER IMAGE.

So, after selecting the six RAW images, right-clicking and selecting ‘Photomerge>HDR’…

Andy Astbury,Lightroom,HDR,merge,photomerge, merge to HDR,high dynamic range,photography,Wildlife in Pixels

Click to view LARGER IMAGE.

…and selecting ‘NONE’ from the ‘de-ghost’ options, I was amazed to find the resulting ‘merged file’ was a DNG – not a TIFF – yet it still carries the 20 stop exposure adjustment  latitude.

Andy Astbury,Lightroom,HDR,merge,photomerge, merge to HDR,high dynamic range,photography,Wildlife in Pixels

Click to view LARGER IMAGE.

This is the best news for ages, and grunge-free, ‘real-looking’ HDR workflow time has just been axed by at least 50%.  I can’t really say any more about it really, except that, IMHO of course, this is the best thing to happen for Adobe RAW workflow since the advent of PV2012 itself – BRILLIANT!

Note: Because all the shots in this sequence featured ‘blurred water’, applying any de-ghosting would be detrimental to the image, causing some some weird artefacts where water met static rocks etc.

But if you have image sequences that have moving objects in them you can select from 3 de-ghost pre-sets to try and combat the artefacts caused by them, and you can check the de-ghost overlay tick-box to pre-visualise the de-ghosting areas in the final image.

Andy Astbury,Lightroom,HDR,merge,photomerge, merge to HDR,high dynamic range,photography,Wildlife in Pixels

Click to view LARGER IMAGE.

Switch up to Lightroom CC 2015 – it’s worth it for this facility alone.

Andy Astbury,Lightroom,HDR,merge,photomerge, merge to HDR,high dynamic range,photography,Wildlife in Pixels

Click to view LARGER IMAGE.

Become a patron from as little as $1 per month, and help me produce more free content.

Patrons gain access to a variety of FREE rewards, discounts and bonuses.

Image Sharpness

Image Sharpness

I spent the other afternoon in the Big Tower at Gigrin, in the very pleasant company company of Mr. Jeffrey “Jeffer-Cakes” Young.    Left arm feeling better yet Jeff?

I think I’m fairly safe in saying that once feeding time commenced at 3pm it didn’t take too long before Jeff got a firm understanding of just how damn hard bird flight photography truly is – if you are shooting for true image sharpness at 1:1 resolution.

I’d warned Jeff before-hand that his Canon 5Dmk3 would make his session somewhat more difficult than a 1Dx, due to it’s slightly less tractable autofocus adjustments.  But that with his 300mm f2.8 – even with his 1.4x converter mounted, his equipment was easily up to the job at hand.

I on the other hand was back on the Nikon gear – my 200-400 f4; but using a D4S I’d borrowed from Paul Atkins for some real head-to-head testing against the D4 (there’s a barrow load of Astbury venom headed Nikon’s way shortly I can tell you….watch this space as they say).

Amongst the many topics discussed and pondered upon, I was trying to explain to Jeff the  fundamental difference between ‘perceived’ and ‘real’ image sharpness.

Gigrin is a good place to find vast armies of ‘photographers’ who have ZERO CLUE that such an argument or difference even exists.

As a ‘teacher’ I can easily tell when I’m sharing hide space with folk like this because they develop quizzical frowns and slightly self-righteous smirks as they eavesdrop on the conversation between my client and I.

“THEY” don’t understand that my client is wanting to achieve the same goal as the one I’m always chasing after; and that that goal is as different from their goal as a fillet of oak-smoked Scottish salmon is from a tin of John West mush.

I suppose I’d better start explaining myself at this juncture; so below are two 800 pixel long edge jpeg files that you typically see posted on a nature photography forum, website or blog:

image sharpness, Andy Astbury, Wildlife in Pixels, Red Kite

IMAGE 1. Red Kite – Nikon D4S+200-400 f4 – CLICK IMAGE to view properly.

Click the images to view them properly.

image sharpness, Andy Astbury, Wildlife in Pixels, Red Kite

IMAGE 2. Red Kite – Nikon D4S+200-400 f4 – CLICK IMAGE to view properly.

“THEY” would be equally as pleased with either…..!

Both images look pretty sharp, well exposed and have pretty darn good composition from an editorial point of view too – so we’re all golden aren’t we!

Or are we?

Both images would look equally as good in terms of image sharpness at 1200 pixels on the long edge, and because I’m a smart-arse I could easily print both images to A4 – and they’d still look as good as each other.

But, one of them would also readily print to A3+ and in its digital form would get accepted at almost any stock agency on the planet, but the other one would most emphatically NOT pass muster for either purpose.

That’s because one of them has real, true image sharpness, while the other has none; all it’s image sharpness is perceptual and artificially induced through image processing.

Guessed which is which yet?

image sharpness, Andy Astbury, Wildlife in Pixels, Red Kite

IMAGE 1 at 1:1 native resolution – CLICK IMAGE to view properly.

Image 1. has true sharpness because it is IN FOCUS.

image sharpness, Andy Astbury, Wildlife in Pixels, Red Kite

IMAGE 2 at 1:1 native resolution – CLICK IMAGE to view properly.

And you don’t need glasses to see that image 2 is simply OUT OF FOCUS.

The next question is; which image is the cropped one – number 2 ?

Wrong…it’s number 1…

image sharpness, Andy Astbury, Wildlife in Pixels, Red Kite

Image 1 uncropped is 4928 pixels long edge, and cropped is 3565, in other words a 28% crop, which will yield a 15+ inch print without any trouble whatsoever.

Image 2 is NOT cropped – it has just been SHRUNK to around 16% of its original size in the Lightroom export utility with standard screen output sharpening.  So you can make a ‘silk purse from a sows ear’ – and no one would be any the wiser, as long as they never saw anything approaching the full resolution image!

Given that both images were shot at 400mm focal length, it’s obvious that the bird in image 1 (now you know it’s cropped a bit) is FURTHER AWAY than the bird in image 2.

So why is one IN FOCUS and the other not?

The bird in image 1 is ‘crossing’ the frame more than it is ‘closing in’ on the camera.

The bird in image 2 is closer to the camera to begin with, and is getting closer by the millisecond.

These two scenarios impose totally different work-loads on the autofocus system.

The ability of the autofocus system to cope with ANY imposed work-load is totally dependent upon the control parameters you have set in the camera.

The ‘success’ rate of these adjustable autofocus parameter settings is effected by:

  1. Changing spatial relationship between camera and subject during a burst of frames.
  2. Subject-to-camera closing speed
  3. Pre-shot tracking time.
  4. Frame rate.

And a few more things besides…!

The autofocus workloads for images 1 & 2 are poles apart, but the control parameter settings are identical.

The Leucistic Red Kite in the shot below is chugging along at roughly the same speed as its non-leucistic cousin in image 2. It’s also at pretty much the same focus distance:

image sharpness, Andy Astbury, Wildlife in Pixels, Red Kite

Image 3. Leucistic Red Kite – same distance, closing speed and focal length as image 2. CLICK IMAGE to view larger version.

So why is image 3 IN FOCUS when, given a similar scenario, image 2 is out of focus?

Because the autofocus control parameters are set differently – that’s why.

FACT: no single combination of autofocus control parameter settings will be your ‘magic bullet’ and give you nothing but sharp images with no ‘duds’ – unless you use a 12mm fish-eye lens that is!

Problems and focus errors INCREASE in frequency in direct proportion to increasing focal length.

They will also increase in frequency THE INSTANT you switch from a prime lens to a zoom lens, especially if the ‘zoom ratio’ exceeds 3:1.

Then we have to consider the accuracy and speed of the cameras autofocus system AND the speed of the lens autofocus motor – and sadly these criteria generally become more favourable with an increased price tag.

So if you’re using a Nikon D800 with an 80-400, or a Canon 70D with a 100-400 then there are going to be more than a few bumps in your road.  And if you stick to just one set of autofocus control settings all the time then those bumps are going to turn into mountains – some of which are going to kill you off before you make their summit….metaphorically speaking of course!

And God forbid that you try this image 3 ‘head on close up’ malarkey with a Sigma 50-500 – if you want that level of shot quality then you might just as well stay at home and save yourself the hide fees and petrol money !

Things don’t get any easier if you do spend the ‘big bucks’ either.

Fast glass and a pro body ‘speed machine’ will offer you more control adjustments for sure.  But that just means more chances to ‘screw things up’ unless you know EXACTLY how your autofocus system works, exactly what all those different controls actually DO, and you know how to relate those controls to what’s happening in front of you.

Whatever lens and camera body combination any of us use, we have to first of all find, then learn to work within it’s ‘effective envelope of operation’ – and by that I mean the REAL one, which is not necessarily always on a par with what the manufacturer might lead you to believe.

Take my Nikon 200-400 for example.  If I used autofocus on a static subject, let alone a moving one, at much past 50 metres using the venerable old D3 body and 400mm focal length, things in the critical image sharpness department became somewhat sketchy to say the least.  But put it on a D4 or D4S and I can shoot tack sharp focussing targets at 80 to 100 metres all day long……not that I make a habit of this most meaningless of photographic pastimes.

That discrepancy is due to the old D3 autofocus system lacking the ability to accurately  discriminate between precise distances from infinity to much over 50 metres when that particular lens was being used. But swap the lens out for a 400 f2.8 prime and things were far better!

Using the lens on either a D4 or D4S on head-on fast moving/closing subjects such as Mr.Leucistic above, we hit another snag at 400mm – once the subject is less than 20 metres away the autofocus system can’t keep up and the image sharpness effectively drops off the proverbial cliff.  But zoom out to 200mm and that ‘cut-off’ distance will reduce to 10 metres or so. Subjects closing at slower speeds can get much closer to the camera before sharp focus begins to fail.

As far as I’m concerned this problem is more to do with the speed of the autofocus motor inside the lens than anything else.  Nikon brought out an updated version of this lens a few years back – amongst its ‘star qualities’ was a new nano-coating that stopped the lens from flaring.  But does it focus any faster – does it heck!  And my version doesn’t suffer from flare either….!

Getting to know your equipment and how it all works is critical if you want your photography to improve in terms of image sharpness.

Shameless Plug Number 1.

I keep mentioning it – my ebook on Canon & Nikon Autofocus with long glass.

Understanding Canon & Nikon Autofocus

for

Bird in Flight Photography

Understanding Canon & Nikon Autofocus for Bird in Flight Photography

Click Image for details.

Become a patron from as little as $1 per month, and help me produce more free content.

Patrons gain access to a variety of FREE rewards, discounts and bonuses.

Colour Editing in Photoshop

Colour Editing in Photoshop using the Channel Mixer

I’ve just uploaded 3 video lessons on THE BEST way to do selective colour changes in Photoshop using the Channel Mixer.

This is a far better and more accurate way to change the colour of something whilst maintaining all its original tonality, and it is vastly better than the commonly touted Hue saturation method.

HueSat doesn’t do the job with 100% fidelity, and you are very limited in the colour choice.

Using the Channel Mixer method you can effectively make every single colour in the Pantone colour spectrum simply by using Pantone/RGB conversion figures.

If you watch the videos on YouTube it may take a minute for the HD play option to activate.

Part 1 is here:

Part 2 here:

Part 3 here:

The demo file can be downloaded on the link below:

https://dl.dropboxusercontent.com/u/87066369/Caterham.psd.zip

There are many instances where you might want or need to change the colour of an object in your image, and this is exactly what the Channel Mixer exists for; not for creating crappy black and white conversions as some crackpots think.

Give it a try for yourself by downloading the file and following along with the videos – the file has the path built into it, put these paths are simple to make with then pen tool.

Become a patron from as little as $1 per month, and help me produce more free content.

Patrons gain access to a variety of FREE rewards, discounts and bonuses.

Lumenzia – Not Just for Landscapes

Luminosity Masking is NOT just for landscape photographs – far from it.

But most folk miss the point of luminosity masking because they think it’s difficult and tedious.

The point, as I always see it, is that luminosity masking allows you to make dramatic but subtle changes and enhancements to your image with what are actually VERY fast and crude “adjustments”.

This in reality means that luminosity masking is FAST – and way faster than trying to do “localised” adjustments.  But the creation of the masks and choosing which one to use is what crippled the “ease factor” for most.

But with this new Lumenzia extension is so snappy and quick at showing you the different masks that, if you know what area of the image you want to adjust, the whole process takes SECONDS.

Let’s look at a White-tailed Eagle taken just 15 days ago:

Straight off the 1Dx it looks like this:

RAW unprocessed .CR2 file

RAW unprocessed .CR2 file (CLICK to view in new window)

Inside the Develop Module of Lightroom 5 it looks like:

camera

RAW unprocessed – (CLICK to view in new window)

A few tweaks later and it looks like:

Lr5adjust

Tweaks are what you can see in the Basics Panel + CamCal set to Neutral, and Chroma Noise removal in the Lens Corrections Panel is turned ON – (CLICK to view in new window)

Sending THIS adjusted image to Photoshop:

ps1

(CLICK to view in new window)

All I want to do is give a “lift” to the darker tones in the bird; under the wings, and around the side of head, legs and tail.

Using a BRUSH to do the job is all fine ‘n dandy BUT, you would be creating a localised adjustment that’s all-encompassing from a tonal perspective; all tones that fell under the brush get adjusted by the same amount.

A luminosity mask, or indeed ANY pixel-based mask is exactly what it says it is – a mask full of pixels. And those pixels are DERIVED from the real pixels in your image.  But the real beauty is that those pixels will be anywhere from 1% to 100% selected, or not selected at all.

Where they are 100% selected they are BLACK, and any adjustment you make BEHIND that mask will NOT be visible.

Pixels that are NOT selected will be WHITE, and your adjustment will show fully.

But where the pixels are between 1% and 99% selected they will appear as 1% GREY to 99% grey and so will show or hide variation of said adjustment by the same amounts…got it?

The Lumenzia D4 mask looks like it’ll do the job I want:

(CLICK to view in new window)

Lumenzia D4 mask (CLICK to view in new window)

Click the image to view larger – look at the subtle selections under those wings – try making that selection any other way in under 2 seconds – you’ve got no chance!

The “lift” I want to make in those WHITER areas of the mask is best done with a Curves Adjustment layer:

Select "Curve" in the Lumenzia GUI - (CLICK to view in new window)

Select “Curve” in the Lumenzia GUI – (CLICK to view in new window)

So hit the Curve button and voilà:

The Lumenzia D4 mask is now applied to Curves Adjustment Layer - (CLICK to view in new window)

The Lumenzia D4 mask is now applied to Curves Adjustment Layer – (CLICK to view in new window)

You can see in the image above that I’ve made a very rough upwards deflection of the curve to obtain an effective but subtle improvement to those under-wing areas etc. that I was looking to adjust.

The total time frame from opening the image in Photoshop to now is about 20 seconds!  Less time than the Lightroom 5 adjustments took…

And to illustrate the power of that Lumenzia D4 Luminosity mask, and the crudity of the adjustment I made, here’s the image WITHOUT THE MASK:

The effect of the luminosity mask is best illustrated by "hiding" it - bloody hell, turn it back on ! - (CLICK to view in new window).

The effect of the luminosity mask is best illustrated by “hiding” it – bloody hell, turn it back on ! – (CLICK to view in new window).

And at full resolution you can see the subtleties of the adjustment on the side of the head:

ll+lum

With Lumenzia (left) and just the Lightroom 5 processing (right) – (CLICK to view in new window).

If you want to get the best from your images AND you don’t want to spend hours trying to do so, then Lumenzia will seriously help you.

Clicking this link HERE to buy Lumenzia doesn’t mean it costs you any more than if you buy it direct from the developer.  But it does mean that I get a small remuneration from the developer as a commission which in turn supports my blog.  Buying Lumenzia is a total no-brainer so please help support this blog by buying it via these links – many thanks folks.

UPDATE June 2018: Greg Benz (the plugin author) has launched a comprehensive Lumenzia training course – see my post here for more information.

Become a patron from as little as $1 per month, and help me produce more free content.

Patrons gain access to a variety of FREE rewards, discounts and bonuses.