Professional Grade Image Sharpening

Professional Grade Image Sharpening for Archive, Print & Web – my latest training video collection.

image sharpening

View the overview page on my download store HERE

Over 11 hours of video training, spread across 58 videos…well, I told you it was going to be big!

And believe me, I could have made it even bigger, because there is FAR MORE to image sharpening than 99% of photographers think.

And you don’t need ANY stupid sharpener plugins – or noise reductions ones come to that.  Because Photoshop does it ALL anyway, and is far more customizable and controllable than any plugin could hope to be.

So don’t waste your money any more – spend it instead, on some decent training to show you how to do the job properly in the first place!

You won’t find a lot of these methods anywhere else on the internet – free or paid for – because ‘teachers cannot teach what they don’t know’ – and I know more than most!

image sharpening

As you can see from the list of lessons above, I cover more than just ‘plain old sharpening’.

Traditionally, image sharpening produces artifacts – usually white and black halos – if it’s over done. And image sharpening emphasizes ‘noise’ in areas of shadow and other low frequency detail, when it’s applied to an image in the ‘traditional’, often taught, blanket manner.

Why sharpen what isn’t in focus – to do so is madness, because all you do is sharpen the noise, and cause more artifacts!

Maximum sharpening should only be applied to detail in the image that is ‘fully in focus’.

So, as ‘focus sharpness’ falls off, so to should the level of applied sharpening.  That way, noise and other artifacts CAN NOT build up in an image.

And the same can be said for noise reduction, but ‘in reverse’.

So image sharpening needs to be applied in a differential manor – and that’s what this training is all about.

Using a brush in Lightroom etc to ‘brush in’ some sort of differential sharpening is NOT a good idea, because it’s imprecise, and something of a fools task.

Why do I say that? Simple……. Because the ‘differential factor bit’ is contained within the image itself – and it’s just sitting there on your computer screen WAITING for you to get stuck in and use it.

But, like everything else in modern digital photography, the knowledge and skill to do so has somehow been lost in the last 12 to 15 years, and the internet is full of ‘teachers’ who have never had these skills in the first place – hence they can’t teach ’em!

However, everyone who buys this training of mine WILL have those skills by the end of the course.

It’s been a real hard slog to produce these videos.  Recording the lessons is easy – it’s the editing and video call-outs that take a lot of time.  And I’ve edited all the audio in Audacity to remove breath sounds and background noise – many thanks to Curtis Judd for putting those great lessons on YouTube!

The price is £59.99. So right now, that’s over 11 hours of training for less than £5.50 per hour – that’s way cheaper than a 1to1, or even a workshop day with a crowd of other people!

So head off over to my download store and buy it, because what you’ll learn will improve your image processing, whether it’s for big prints or just jpegs on the web – guaranteed – just click here!

Become a patron from as little as $1 per month, and help me produce more free content.

Patrons gain access to a variety of FREE rewards, discounts and bonuses.

 

Lightroom Dehaze – part 2

More Thoughts on The Lightroom Dehaze Control

With the dehaze adjustment in Lightroom (right) the sky and distant hills look good, but the foreground looks poor.

With the dehaze adjustment in Lightroom (right) the sky and distant hills look good, but the foreground looks poor.

In my previous post I did say I’d be uploading another video reflecting my thoughts on the Lightroom/ACR dehaze adjustment.

And I’ve just done that – AND I’ve made a concious effort to keep the ramblings down too..!

In the video I look at the effects of the dehaze adjustment on 4 very different images, and alternative ways of obtaining similar or better results without it.

You may see some ‘banding’ on the third image I work on – this is down to YouTube video compression.

In conclusion I have to say that I find the dehaze ‘tool’ something of an anti-climax if I’m honest. In fairly small positive amounts it can work exceptionally well in terms of a quick work flow on relatively short dynamic range images.  But I’m not a really big fan in general, and It’s possible to create pretty much the same adjustments using the existing Lightroom tools.

Become a patron from as little as $1 per month, and help me produce more free content.

Patrons gain access to a variety of FREE rewards, discounts and bonuses.

Lightroom Dehaze

 The Lightroom Dehaze Control

I’m getting a bit fed up with seeing countless folk raving about this new dehaze slider control in Lightroom, ACR etc.

dehaze,lightroom,Andy Astbury,WildlifeinPixels

The control itself can be found at the bottom of the Effects panel in the Develop module in Lightroom CC 2015, and at the top of the ACR FX tab.

Yes it’s certainly useful, but I have yet to see anyone illustrating its bad points – so Uncle Andy has made a video: if you are reading this in email, click this link to watch the video https://www.wildlifeinpixels.net/blog/lightroom-dehaze/

I do tend to waffle a bit in videos so apologies for that…!

You might want to click the YouTube icon bottom right corner and watch this video at a larger size.

I’m not saying that the dehaze control in Lightroom and ACR is crap – far from it.  But I am strongly advising that you deploy it with some caution, especially when images contain small fine edge detail.

Under these circumstances, positive value dehaze control adjustments can have disastrous effects on fine detail.  You might not be aware of these ‘on screen’ but send the image to A2 print and you could be in for some tears.

I’ll be doing another video on the dehaze control shortly, showing some of the positives that I see in it.

Become a patron from as little as $1 per month, and help me produce more free content.

Patrons gain access to a variety of FREE rewards, discounts and bonuses.

Image Sharpness

Image Sharpness

I spent the other afternoon in the Big Tower at Gigrin, in the very pleasant company company of Mr. Jeffrey “Jeffer-Cakes” Young.    Left arm feeling better yet Jeff?

I think I’m fairly safe in saying that once feeding time commenced at 3pm it didn’t take too long before Jeff got a firm understanding of just how damn hard bird flight photography truly is – if you are shooting for true image sharpness at 1:1 resolution.

I’d warned Jeff before-hand that his Canon 5Dmk3 would make his session somewhat more difficult than a 1Dx, due to it’s slightly less tractable autofocus adjustments.  But that with his 300mm f2.8 – even with his 1.4x converter mounted, his equipment was easily up to the job at hand.

I on the other hand was back on the Nikon gear – my 200-400 f4; but using a D4S I’d borrowed from Paul Atkins for some real head-to-head testing against the D4 (there’s a barrow load of Astbury venom headed Nikon’s way shortly I can tell you….watch this space as they say).

Amongst the many topics discussed and pondered upon, I was trying to explain to Jeff the  fundamental difference between ‘perceived’ and ‘real’ image sharpness.

Gigrin is a good place to find vast armies of ‘photographers’ who have ZERO CLUE that such an argument or difference even exists.

As a ‘teacher’ I can easily tell when I’m sharing hide space with folk like this because they develop quizzical frowns and slightly self-righteous smirks as they eavesdrop on the conversation between my client and I.

“THEY” don’t understand that my client is wanting to achieve the same goal as the one I’m always chasing after; and that that goal is as different from their goal as a fillet of oak-smoked Scottish salmon is from a tin of John West mush.

I suppose I’d better start explaining myself at this juncture; so below are two 800 pixel long edge jpeg files that you typically see posted on a nature photography forum, website or blog:

image sharpness, Andy Astbury, Wildlife in Pixels, Red Kite

IMAGE 1. Red Kite – Nikon D4S+200-400 f4 – CLICK IMAGE to view properly.

Click the images to view them properly.

image sharpness, Andy Astbury, Wildlife in Pixels, Red Kite

IMAGE 2. Red Kite – Nikon D4S+200-400 f4 – CLICK IMAGE to view properly.

“THEY” would be equally as pleased with either…..!

Both images look pretty sharp, well exposed and have pretty darn good composition from an editorial point of view too – so we’re all golden aren’t we!

Or are we?

Both images would look equally as good in terms of image sharpness at 1200 pixels on the long edge, and because I’m a smart-arse I could easily print both images to A4 – and they’d still look as good as each other.

But, one of them would also readily print to A3+ and in its digital form would get accepted at almost any stock agency on the planet, but the other one would most emphatically NOT pass muster for either purpose.

That’s because one of them has real, true image sharpness, while the other has none; all it’s image sharpness is perceptual and artificially induced through image processing.

Guessed which is which yet?

image sharpness, Andy Astbury, Wildlife in Pixels, Red Kite

IMAGE 1 at 1:1 native resolution – CLICK IMAGE to view properly.

Image 1. has true sharpness because it is IN FOCUS.

image sharpness, Andy Astbury, Wildlife in Pixels, Red Kite

IMAGE 2 at 1:1 native resolution – CLICK IMAGE to view properly.

And you don’t need glasses to see that image 2 is simply OUT OF FOCUS.

The next question is; which image is the cropped one – number 2 ?

Wrong…it’s number 1…

image sharpness, Andy Astbury, Wildlife in Pixels, Red Kite

Image 1 uncropped is 4928 pixels long edge, and cropped is 3565, in other words a 28% crop, which will yield a 15+ inch print without any trouble whatsoever.

Image 2 is NOT cropped – it has just been SHRUNK to around 16% of its original size in the Lightroom export utility with standard screen output sharpening.  So you can make a ‘silk purse from a sows ear’ – and no one would be any the wiser, as long as they never saw anything approaching the full resolution image!

Given that both images were shot at 400mm focal length, it’s obvious that the bird in image 1 (now you know it’s cropped a bit) is FURTHER AWAY than the bird in image 2.

So why is one IN FOCUS and the other not?

The bird in image 1 is ‘crossing’ the frame more than it is ‘closing in’ on the camera.

The bird in image 2 is closer to the camera to begin with, and is getting closer by the millisecond.

These two scenarios impose totally different work-loads on the autofocus system.

The ability of the autofocus system to cope with ANY imposed work-load is totally dependent upon the control parameters you have set in the camera.

The ‘success’ rate of these adjustable autofocus parameter settings is effected by:

  1. Changing spatial relationship between camera and subject during a burst of frames.
  2. Subject-to-camera closing speed
  3. Pre-shot tracking time.
  4. Frame rate.

And a few more things besides…!

The autofocus workloads for images 1 & 2 are poles apart, but the control parameter settings are identical.

The Leucistic Red Kite in the shot below is chugging along at roughly the same speed as its non-leucistic cousin in image 2. It’s also at pretty much the same focus distance:

image sharpness, Andy Astbury, Wildlife in Pixels, Red Kite

Image 3. Leucistic Red Kite – same distance, closing speed and focal length as image 2. CLICK IMAGE to view larger version.

So why is image 3 IN FOCUS when, given a similar scenario, image 2 is out of focus?

Because the autofocus control parameters are set differently – that’s why.

FACT: no single combination of autofocus control parameter settings will be your ‘magic bullet’ and give you nothing but sharp images with no ‘duds’ – unless you use a 12mm fish-eye lens that is!

Problems and focus errors INCREASE in frequency in direct proportion to increasing focal length.

They will also increase in frequency THE INSTANT you switch from a prime lens to a zoom lens, especially if the ‘zoom ratio’ exceeds 3:1.

Then we have to consider the accuracy and speed of the cameras autofocus system AND the speed of the lens autofocus motor – and sadly these criteria generally become more favourable with an increased price tag.

So if you’re using a Nikon D800 with an 80-400, or a Canon 70D with a 100-400 then there are going to be more than a few bumps in your road.  And if you stick to just one set of autofocus control settings all the time then those bumps are going to turn into mountains – some of which are going to kill you off before you make their summit….metaphorically speaking of course!

And God forbid that you try this image 3 ‘head on close up’ malarkey with a Sigma 50-500 – if you want that level of shot quality then you might just as well stay at home and save yourself the hide fees and petrol money !

Things don’t get any easier if you do spend the ‘big bucks’ either.

Fast glass and a pro body ‘speed machine’ will offer you more control adjustments for sure.  But that just means more chances to ‘screw things up’ unless you know EXACTLY how your autofocus system works, exactly what all those different controls actually DO, and you know how to relate those controls to what’s happening in front of you.

Whatever lens and camera body combination any of us use, we have to first of all find, then learn to work within it’s ‘effective envelope of operation’ – and by that I mean the REAL one, which is not necessarily always on a par with what the manufacturer might lead you to believe.

Take my Nikon 200-400 for example.  If I used autofocus on a static subject, let alone a moving one, at much past 50 metres using the venerable old D3 body and 400mm focal length, things in the critical image sharpness department became somewhat sketchy to say the least.  But put it on a D4 or D4S and I can shoot tack sharp focussing targets at 80 to 100 metres all day long……not that I make a habit of this most meaningless of photographic pastimes.

That discrepancy is due to the old D3 autofocus system lacking the ability to accurately  discriminate between precise distances from infinity to much over 50 metres when that particular lens was being used. But swap the lens out for a 400 f2.8 prime and things were far better!

Using the lens on either a D4 or D4S on head-on fast moving/closing subjects such as Mr.Leucistic above, we hit another snag at 400mm – once the subject is less than 20 metres away the autofocus system can’t keep up and the image sharpness effectively drops off the proverbial cliff.  But zoom out to 200mm and that ‘cut-off’ distance will reduce to 10 metres or so. Subjects closing at slower speeds can get much closer to the camera before sharp focus begins to fail.

As far as I’m concerned this problem is more to do with the speed of the autofocus motor inside the lens than anything else.  Nikon brought out an updated version of this lens a few years back – amongst its ‘star qualities’ was a new nano-coating that stopped the lens from flaring.  But does it focus any faster – does it heck!  And my version doesn’t suffer from flare either….!

Getting to know your equipment and how it all works is critical if you want your photography to improve in terms of image sharpness.

Shameless Plug Number 1.

I keep mentioning it – my ebook on Canon & Nikon Autofocus with long glass.

Understanding Canon & Nikon Autofocus

for

Bird in Flight Photography

Understanding Canon & Nikon Autofocus for Bird in Flight Photography

Click Image for details.

Become a patron from as little as $1 per month, and help me produce more free content.

Patrons gain access to a variety of FREE rewards, discounts and bonuses.

Speed Light Photography

Speed Light Photography – part 1

First things first, apologies for the gap in blog entries – I’ve been a bit “in absentia” of late for one reason or another.  I’ve got a few gear reviews to do between now and the end of the year, video tutorial ideas and requests are crawling out of the woodwork, and my ability to organise myself has become something of a crumbling edifice!

I blame the wife myself………………..

But I’ve come to the conclusion that for one reason or another I’ve become somewhat pigeon-holed as a wildlife/natural history photographer – going under the moniker of Wildlife in Pixels it’s hardly a big surprise is it..

But I cut my photographic teeth on studio product/pack shot and still life work – I loved it then and I still do.  And there’s NOTHING that teaches you more about light than studio work – it pays dividends in all aspects of photography, wildlife and landscape work are no exception.  Understanding how light behaves, when it’ll look good and when it’ll look like a bag of spanners is what helps capture mood and atmosphere in a shot.

The interaction between light and subject is what makes a great image, and I do wish photographers would understand this – sadly most don’t.

To this end I’ve begun to teach workshops that try to give those attending a flavor of the basic concepts of light by introducing them to the idea of using their speed lights to produce images they can do 365 days a year cum rain or shine – high speed flash, and simple product still life.

Both styles demand a high level of attention to detail in the way the light produced by the speed lights bends and wraps around the subject.  Full-blown studio lights have the benefit of modelling lights so that you can see this before you take the shot, but using speed lights means you have to imagine what the light is doing, so it’s level of difficulty begins high, but decreases with practical experience.

A basic 3 light setup with speed lights can produce some really soft and moody lighting with ease.

A basic 4 light setup with speed lights can produce some really soft and moody lighting with ease.

This Black Label shot went a bit bonkers in the final stages with the addition of smoke, but it gives you an idea of the subtlety of lighting that can be achieved with speed lights.

As for the setup, here’s a shot before I introduced the glass….

Simple setup for the Black Label shot - note the well-appointed studio!

Simple setup for the Black Label shot – note the well-appointed studio!

…featuring that most valuable of studio photographers tools, the Voice Activated Light Stand..!

Four SB800’s in all, the one on the right is running at 1/2 power and is fitted with an Interfit Strobies softbox and is double diffused using a Calumet 42″ frame (available here) and white diffuser – this constitutes the main light.

Just look at the size of the diffused disc on the face of that 42″ frame – all that from a poxy 2″x1″ flash head in less than 16″ – epic!

The SB800 on the left, fitted with another softbox is turned down to 1/64th power, and is there solely to illuminate the label where it wraps around the left edge of the bottle, and to get a second neck highlight. Although their is light emanating from it, its greatest effect is that of “bouncing” light from the right hand source back in to the bottle.

The V.A.L.S. is fitted with a third speed light that has a diffused snoot – note the expensive diffusion material and the highly engineered attachment method – kitchen towel and rubber band!  The sole purpose of this tiny soft light is to just help pull out the left side of the bottle cap from the intensely dark background towards the top of the shot.

The 4th SB800 is fitted with a 30 degree honeycomb and a “tits ‘n ass”; or TNA2 to be more correct; filter just to give a subtle warm graduation to the background.

Speaking of the background, this is a roll of high grade tracing paper – one of the most versatile materials any studio has, both as a front lit or back lit background, or as a diffusion material – just brilliant stuff, second only to Translum plastic, and a shed-load cheaper.

At the other end of the speed light photography spectrum is the most enjoyable and fascinating pastime of high speed liquid motion photography – a posh way of saying “making a mess”!

It doesn’t have to be too messy – just don’t do it on your best Axminster!

By utilising the IGBT (Isolated Gate Bipolar Transistor) circuitry given to us in speed lights we can deploy the very fast tube burn times, or flash durations, obtained at lower output power settings to our advantage.

Simple shots of water, both dyed and clear can produce some stunning captures:

Streams of water captured back lit against a white background illuminated by two speed lights.

Streams of water captured back lit against a white background illuminated by two speed lights.

The background for this shot (above) is an A1 sized sheet of white foam board illuminated by a pair of SB910s.  The internal reflector angle is set to 35mm and the two speed lights are placed on stands about three feet from the background, just out of shot left and right, and aimed pretty much at the center of the board to facilitate a fairly even spread of light.

The power output settings for both speed lights is set to 1/16th which gives us 1/10,000th of a second flash duration.

Switching to tracing paper as a back lit background immediately puts us at a disadvantage in that it’ll cut the amount of light we see at the camera. But a back lit background always looks just that little bit better as it makes your lighting more easy to shape and control.

Doubling the speed light count behind the trace background to 4 now gives us the power in terms of guide number equal to your average studio light – but with full IGBT advantages.

Working a little closer to the background than we were with the white board/reflected light method we can very easily generate a smooth white field of 255RGB which will make our liquid splash shots really punchy:

Working about 3 feet from a translucent background illuminated by 4 SB800's gives us a much flatter white background, especially when deploying a 150mm or 180mm macro lens.

Working about 3 feet from a translucent background illuminated by 4 SB800’s gives us a much flatter white background, especially when deploying a 150mm or 180mm macro lens.

Shot with a 180mm macro lens at ISO 260 and f16 we have bags of depth of field on this shot.

Using 4x SB800s we can dial in the correct background exposure using the flash output power and camera ISO – we want a background that’s just on the verge of “blinkies”.  If we over expose too much for the background the light will wrap around the liquid edges too much, washing out the contrast and flaring – that’s something that muppet on Adorama TV doesn’t tell you!

Take a few shots holding the glass by the rim gives us a clean foot to the glass, so we can now go and make a nice composite in Photoshop:

Composite of a couple of splash shots and a couple of "clean foot" images....

Composite of a couple of splash shots and a couple of “clean foot” images….

Happy sodding Valentines day for next year everyone……..yuck, but it’ll sell all day bloomin’ long!

A while ago I posted an entry on this blog about doing splash shots using a method I call “long flash short shutter” HERE.

All the shots on this entry have been taken using the “short flash long shutter” method.

This latter method is the more versatile one of the two because it has a more effective “motion freezing” power; the former method being speed-limited by the 1/8000th shutter speed – and it’s more costly on batteries!

BUT………there’s always one of those isn’t there…?

Short flash long shutter utilises the maximum X-synch speed or the camera.  This is the fastest speed we can use where the sensor is FULLY open, and it’s most commonly 1/250th sec.

Sussed the massive potential pitfall yet?

That’s right – AMBIENT LIGHT.

If any ambient light reaches the sensor during our 1/250th sec exposure time then WE WILL GET MOTION BLUR that will visually amount to the same sort of effect as slow synch, sharp image with under exposed blur trails.

So we need to make sure that the ambient light is low enough to render a totally black frame.

The “long flash short shutter” method works well in conditions of high ambient provided that the action can be frozen in 1/8000th sec.  If your camera only does 1/4000th sec then the method becomes somewhat less useful.

Freezing action depends on a number of things:

  • 1. Is the subject falling under gravity or rising against it?
  • 2. How far away is the subject?

A body falling under gravity is doing around 10mph after it’s fallen 2 feet from a dead start, and a car doing 100mph looks a lot slower when it’s 200 yards down the road than it does when it’s 20 yards away.

Similarly, if we have a cascade of liquid falling under gravity through the frame of our camera and (to avoid the jug or pouring vessel) the liquid has fallen 6 inches when it enters the top of the frame, and 30 inches when it vacates the bottom of the frame; we have to take a few things into consideration.

  • The liquid is faster at the bottom of the frame than at the top – think Angel Falls – the water pulls itself apart (that’s why the images can look so amazing).
  • If we shoot close with a short lens the speed differential across the frame will be the same BUT the overall speed will be a little more apparent than if we shoot with a longer lens from further away.

An SB910 has a 1/16th power output duration of 1/10000th sec and an SB800 1/10,900th at the same output setting (OEM-quoted values). With a 70mm lens close up this can make a subtle difference in image sharpness, but fit a 180mm and move further away from the subject to maintain composition, and the difference is non-existent.

If you are throwing liquid upwards against gravity, then it’s slowing down, and will eventually stop before falling back under the effects of gravity – quite often, 1/8000th is sufficient to freeze this sort of motion.

Both “long shutter short flash” and “short shutter long flash” are valid methods, each with their own pluses and minuses; but the method I always recommend people start with is the former “long shutter” method – it’s easier!

When a shot features a glass remember one thing – drinking glasses were invented by a race of photographer-hating beings! Glasses transmit, reflect and refract light through a full 360 degrees and you can really end up chasing your tail trying to find the source of an errant reflection if you don’t go about lighting it in the correct manner.

And if you put liquid in it then things can get a whole lot worse!

I’ll be doing some very specific workshops with Calumet in the near future that will be all about lighting glass and metal, gloss and matte surfaces, so keep your eye open if this sort of thing interests you – IT SHOULD ‘cos it’ll make you a better photographer….!

The simplest “proper” glass lighting method is what we call “bright field illumination” and guess what – that’s the method used in all the above liquid shots.

Glass Photography - Bright Field & Dark Field illumination.

Glass Photography – Bright Field & Dark Field illumination.

In the image above, I’ve photographed the same glass using the two ancient and venerable methods of glass photography – one is easy, the other a total pain in the ass; guess which is which!

I’m not going to go into this in detail here, that’ll be in a later post; but BRIGHT FIELD defines the outline of the glass with DARK lines, and DARK FIELD defines the glass white lines of WHITE or highlight.

If you guessed DARK FIELD is the pain the bum then you were right – you will see bits of your “studio” reflected in the glass you didn’t even know existed unless you get this absolutely spot on and 100% correct.

The nice thing about studio-style photography is that you have thinking time, without pressure from working with people, animals or weather and a constantly moving sun. You can start to work up a shot and then leave it over night, when you come back the next day and click the shutter everything is as you left it – unless you’ve had burglars.

You do develop a habit of needing more “grips” gear – you’ve NEVER got the right bit! But then again it’s far cheaper than the bad habit of tripod accumulation like my friend Malc is afflicted with!

Later Folks!

Become a patron from as little as $1 per month, and help me produce more free content.

Patrons gain access to a variety of FREE rewards, discounts and bonuses.

Auto Focus Work Out

Auto Focus Work Out

My recent summer trip to Flatanger in Norway, and to the famous “Eagle Man of Norway” Ole Martin Dahle, proved, as ever, a severe test of the auto focus capabilities of the gear!

We had 4 guys on the trip, 3 Nikon and 1 Canon, and White-tailed Eagles doing more than 40mph and turning on a dime is one of the hardest tests for auto focus tracking and lock on that you can imagine – especially when it’s all done hand held from a boat that’s rolling around in the sea swell.

wildlife photography,auto focus,Nikon,D4,Andy Astbury,eagle,Norway,workshop,camera settings

The Guys – yours truly, Malcolm Clayton and Paul Atkins; and Mohamed El Ashkar (all the way from Cairo!) and our Cambridge “Don” – all trips should have one – Jamie Gundry. Photo by Ole Martin Dahle.

We had a conglomeration of D4’s, D800E’s and 200-400 f4’s, with a smattering of 300mm and 400mm f2.8’s – and then there was Mohamed with his solitary 1Dx and 300 f2.8.

And our target:

wildlife photography,auto focus,Nikon,D4,Andy Astbury,eagle,Norway,workshop,camera settings

Say “Hello” to “Brutus” – an eagle who lives up to his name for sure – a total brute, especially to a boat full of daft photographers! CLICK for larger view.

Just to set the scene with regard to the technical side of things; birds fly into the wind given the choice, and the sun is wherever it decides to be! So the boat driver – Ole – always needs to position the boat so that “wind and sunlight” are coming from pretty much the same direction, otherwise the birds are not front-lit and cast their own shadows across themselves. In other words the images look like crap!

Some birds come towards the boat, take the fish and then turn away; some will do their approach parallel to the boat; and gits like Brutus will fly low and fast straight at you, pick the fish and then turn straight for the boat and climb.

But no matter how they choose to approach the camera boat all the birds pick the fish and go back to where they’ve come from.

Ole has intimate knowledge of these birds as individuals, and so has a damn good idea of what they will do as they come to the boat.  This enables him to manoeuvre the boat for the best shots, and this skill is what you pay for.

Perhaps by now you’ve got the general feel for the situation – a boat that’s subject to wave motion and which might suddenly go backwards 10 yards through its own wake – not the steadiest of camera platforms!

Couple that with trying to make the auto focus lock on and track the bird, and maintain a modicum of composition – it’s just damned hard work.

Photographing anything that’s moving is hard work; moving erratically is even harder; and hand holding on an oscillating camera platform makes the job beyond hard.  This style of shooting will NEVER yield vast rafts of sharp sequential images – anyone who tells you different is an outright liar. Christ, even licensed FIA F1 ‘togs are on “easy street” by comparison.

Auto focus cannot be set up perfectly for this sort of situation, but understanding it is a MUST if you want to maximise the opportunity.

Auto Focus Choices

There are 3 main things that control the effectiveness of auto focus and AF tracking:

AF Area Mode

AF Tracking Lock-on interval

Frame Rate

(Bare in mind I’m talking Nikon here, but sorting Mohameds’ 1Dx out showed my that Canon AF is pretty much the same).

Now I dealt with the latter in a previous post HERE and so we need to concentrate here on AF area modes in the main.

Let’s look at what we have to work with on a Nikon body – in this case a D4:

Firstly, the AF sensor layout.

All 51 focus sensors, and there approximate layout in relation to the image frame:

wildlife photography,auto focus,Nikon,D4,Andy Astbury,eagle,Norway,workshop,camera settings

All 51 of the Nikon Multi Cam 3500 FX focus sensors – both cross and linear sensors depicted.

Just the Cross-type Sensors:

wildlife photography,auto focus,Nikon,D4,Andy Astbury,eagle,Norway,workshop,camera settings,Nikon Multi-Cam 3500 FX unit

The 15 Cross type focus sensors on the Nikon Multi-Cam 3500 FX unit.

The Linear-type Sensors:

wildlife photography,auto focus,Nikon,D4,Andy Astbury,eagle,Norway,workshop,camera settings,Nikon Multi-Cam 3500 FX unit

The 36 Linear type focus sensors on the Nikon Multi-Cam 3500 FX unit.

Single Area AF

wildlife photography,auto focus,Nikon,D4,Andy Astbury,eagle,Norway,workshop,camera settings,Nikon Multi-Cam 3500 FX unit

Single Area, or single point AF.

9 Point Dynamic Area AF:

wildlife photography,auto focus,Nikon,D4,Andy Astbury,eagle,Norway,workshop,camera settings,Nikon Multi-Cam 3500 FX unit

9 Point Dynamic Area AF

wildlife photography,auto focus,Nikon,D4,Andy Astbury,eagle,Norway,workshop,camera settings,Nikon Multi-Cam 3500 FX unit

9 Point DA AF as displayed in the viewfinder (drop shadows added in Photoshop behind the dots to aid visibility in this article).

21 Point Dynamic Area AF:

wildlife photography,auto focus,Nikon,D4,Andy Astbury,eagle,Norway,workshop,camera settings,Nikon Multi-Cam 3500 FX unit

21 Point Dynamic Area AF

wildlife photography,auto focus,Nikon,D4,Andy Astbury,eagle,Norway,workshop,camera settings,Nikon Multi-Cam 3500 FX unit

21 Point DA AF as displayed in the viewfinder (drop shadows added in Photoshop behind the dots to aid visibility in this article).

51 Point Dynamic Area AF:

wildlife photography,auto focus,Nikon,D4,Andy Astbury,eagle,Norway,workshop,camera settings,Nikon Multi-Cam 3500 FX unit

51 Point DA AF as displayed in the viewfinder (drop shadows added in Photoshop behind the dots to aid visibility in this article).

As a stills photographer you are using what’s called Phase Detection auto focus (that’ll be another blog post topic!) but it still relies on a mix of contrast,luminosity and colour to work out what it should be concentrating on in the frame.

Consider the following 2 images, A & B:

wildlife photography,auto focus,Nikon,D4,Andy Astbury,eagle,Norway,workshop,camera settings,Nikon Multi-Cam 3500 FX unit

A. Dark Subject and Light Background.
Subject itself is low contrast, background water is higher contrast. Subject is at 15 meters, Focal Length is 240mm

wildlife photography,auto focus,Nikon,D4,Andy Astbury,eagle,Norway,workshop,camera settings,Nikon Multi-Cam 3500 FX unit

B. Light Subject against a Dark Background.
Subject now has a slightly higher contrast, and background is lower contrast. Subject 29 meters, Focal length 360mm

Auto focus is dumb; just plain stupid, left to its own devices.  It, like me (yep, me dumb too!) favours lighter things with a higher degree of contrast.  The lighter something is then the brighter and more saturated it colour is, and this in turn gives it higher localised contrast.

Auto focus will be happier locking on to and tracking Eagle B than Eagle A.

In A, the AF will want to switch to the lighter, more contrasty water behind the bird – unless of course you “hobble it” and stop it from doing so…

And you stop it by BLINDING IT – in other words use LESS active auto focus points!

“If it ain’t got ’em it can’t switch to ’em!”

If all the AF points in use are on the important part of the subject (the EYE in this case) then there’s little or no chance of the auto focus switching to somewhere you don’t want it to go to.

In a perfect world we’d all be using Single Area AF on a tripod and panning away quite happily keeping that single sensor on the targets eye……………oh I wish!!!!!!

51 point AF is out for this sort of work – with what I’ve just written you should now easily understand why.

So we are down to either the 9 point or 21 point Dynamic Areas.

It all comes down to two things:

  • How steady you can keep the camera.
  • How big in the frame the birds are – in other words, subject distance.

But accuracy of auto focus will always be improved by using the least number of sensors you can get away with.

 

Image A. is at 240mm and a subject distance of 15 meters, and Image B. is at 360mm and a subject distance of 29 meters.  Both images were shot using 21 point Dynamic Area AF, 1/2000th @ f7 and 1600ISO.

wildlife photography,auto focus,Nikon,D4,Andy Astbury,eagle,Norway,workshop,camera settings,Nikon Multi-Cam 3500 FX unit

21 point AF, 15 meters and 240mm focal length.

wildlife photography,auto focus,Nikon,D4,Andy Astbury,eagle,Norway,workshop,camera settings,Nikon Multi-Cam 3500 FX unit

21 point AF, 29 meters and 360mm focal length.

On the upper detail image there’s one, perhaps two of the 21 sensors that are NOT on the subject.

On the second image there are at least 9 sensors out of the 21 in the group that are NOT on the bird.

If the bird in image A. had been 29 meters away I’ll guarantee it would have been out of focus – why?

  • Lack of good directional light.
  • Poor subject contrast and illumination.
  • Brighter, higher contrast background.
  • More sensors “Off Target”.

And the auto focus hasn’t wanted to wander to the background on image B. because there’s nothing there for it to favour over the main subject.

How Dynamic Area AF Works

9 point DA auto focus uses the single AF point that you select, but activates the 8 points surrounding it.  If you, or the subject, or both, move so that the single point you selected comes “off target” then one of those 8 surrounding points will “cover” the error and maintain focus lock and tracking until you get back on target.

In 9 point DA, auto focus ALL the sensors activated are “cross type” sensors, assuming you use a sensor on the vertical center line of the AF grid.

In 21 point DA, auto focus is still centered on the single sensor you select, but now the surrounding 20 are activated. But at least 6 of these sensors will be linear, not cross type sensors.

Auto Focus Senor Types – Cross and Linear (line).

This is going to be immensely paraphrased!

AF sensors need to see edge detail in order to work. A linear sensor can work more effectively when the edge it’s looking at is perpendicular to it.

The more an edge is parallel to said line sensor then the harder time it has in discerning when said edge is sharp or not.

But if we add 2 line sensors together at right angles to each other, then an edge that is parallel to one line is perpendicular to the other – so edge detection is greatly enhanced.

In an ideal scenario 9 point Dynamic Area AF, centered in the middle of the view finder and kept on the eagles head would be the ideal way to go, but with the other circumstances of:

  • Moving camera platform
  • Potential closeness of subject (sub 15 meters possible)

then 9 point DA might be a wee bit tight on both counts, and 21 point makes more sense from a tracking and shooting perspective.

But it leads to an initial problem with the auto focus acquiring the target in the first place.  You have to pick these eagles up quite a way out, and if one is coming low to the water then there is possibly too much in the frame to act as a distraction to the auto focus unit itself; though this isn’t quite such an issue if the bird is high in the sky.

So my recommendation for any form of bird-in-flight photography is to start out at 9 point DA and see how you get on!

There is always the AF Tracking Lock On feature that you can deploy in order to “hobble” the AF unit from switching  to subjects closer to or further away, but if I’m honest I find this the most sticky and difficult aspect of the Nikon system to get a precise handle on.  It does exactly “what it says on the tin” but it’s the “when” and “how much by” bits that have me slightly guessing.

Sometimes I put it on long and it basically waits for perhaps 4 or 5 seconds before it tries to switch focus, while at other times it does so in less than half the time.  Sometimes I feel it actually diminishes the effectiveness of the “predictive” side of the auto focus tracking unit.

But if I turn it off when hand holding the camera for flight shots then everything turns to crap – so I turn it back on again!

Again, my base recommendations for this are SHORT to NORMAL and see how things go.

One thing that can have a considerable impact on the way you perceive your auto focus effectiveness is how you have your AF release priority set up (CS a1).

There are 4 options:

  • Release
  • Focus+Release
  • Release+Focus
  • Focus

By default this is set to FOCUS.  With the default setting, it’s theoretically impossible to take a soft shot.  But in practice that’s not so simple, and I’ve taken many a soft shot when the D4 “thinks” things are sharp; though in the main, that seems to have been cured the minute we got trap focus back with the latest firmware upgrade.

Release means the camera will take shots irrespective of focus being acquired or not.  I NEVER use this option.

Focus+Release means that the first frame will only be taken once focus is acquired, and subsequent frames will be taken irrespective of focus.  This is one of my preferred options when everything is unstable – that first frame hopefully sets up the auto focus and AF tracking and so everything SHOULD keep the subsequent frames sharp – please note the use of the word “should”!

Both the above release priority modes do NOT slow the frame rate.

Release+Focus – works the opposite way to Focus+Release – it does slow the frame rate down giving the mirror more down-time and so the auto focus system has more time to work.  This is my other preferred option, the one I use when the “action” may not be as repeatable.

Focus – This is the option I deploy when shooting from a tripod or when the action is not quite so fast-paced.  Again, this option slows the frame rate.

The Back Button Auto Focus Option

I always use the back button for auto focus activation.  There are plenty of arguments for doing this, but I just feel it’s darn right more efficient than having AF activation on the shutter button.  Just don’t forget to turn AF/Shutter ON to OFF in the menu, otherwise you are just wasting time and effort!

Conclusion

A lot of folk feel that their auto focus is flawed; but more often it is they and their setup choices which are flawed.

There is no blanket panacea or magic bullet setting for your AF system – as with everything else you have to constantly evaluate the light around you, anticipate the shot and make the necessary changes to setup – otherwise it’s going to be a sad day.

But knowing how your gear works and how it reacts under different scenarios is the “meat and two veg” of good photography.  Couple that with shot anticipation and the proper corrective measures and it’s off home for tea and medals!

But above all, remember to have a laugh – you’re a long time dead……..

wildlife photography,auto focus,Nikon,D4,Andy Astbury,eagle,Norway,workshop,camera settings,Nikon Multi-Cam 3500 FX unit

“GIMME SOME, YOU MEAN BARSTARD!”

Become a patron from as little as $1 per month, and help me produce more free content.

Patrons gain access to a variety of FREE rewards, discounts and bonuses.

Flash Duration – How Fast Can We Go

Flash duration – how long the burst of photons from flash actually lasts, does seem to get a lot of people confused.

Earlier this year I posted an article on using flash HERE where the prime function of the flash was as a fill light. As a fill, flash should not be obvious in the images, as the main lighting is still the ambient light from the sun, and we’re just using the flash to “tickle” the foreground with a little extra light.

flash duration,fill flash,flash,shutter speed,photography,Andy Astbury,digital photography,wildlife photography,Red Squirrel

Flash as “fill” where the main lighting is still ambient daylight, and a moderate shutter speed is all that’s required. 1/800th sec @ f8 is plenty good enough for this shot.

Taking pictures is NEVER a case of just “rocking up”, seeing a shot and pressing the shutter; for me it’s a far more complex process whereby there’s a possible bucket-load of decisions to be made in between the “seeing the shot” bit and the “pressing the shutter” bit.

My biggest influencers are always the same – shutter speed and aperture, and the driving force behind these two things is light, and a possible lack thereof.

Once I make the decision to “add light” I then have to decide what role that additional light is going to take – fill, or primary source.

Obviously, in the shot above the decision was fill, and everything was pretty straight forward from there on, and aperture/shutter speed  selection is still dictated by the ambient lighting – I use the flash as a “light modifier”.

The duration of the flash is controlled by the TTL metering system and it’s duration is fairly irrelevant.

Let’s take a look at a different scenario.

flash duration,fill flash,flash,shutter speed,photography,Andy Astbury,digital photography,wildlife photography

The lovely Jo doing her 1930’s screen icon “pouty thing”. Flash is the ONLY light source in this image. 1/250th @ f9 ISO 100.

In this shot the lighting source is pure flash.  There’s very little in the way of ambient light present in this dark set, and what bit there is was completely over-powered by the flash output – so the lighting from the Elinchrom BX 500 monoblocks being used here is THE SOLE light source.

Considerations over the lighting itself are not the purpose of this post – what we are concerned with here are the implications for shutter speed due to flash synchronization.

The flash units were the standard type of studio flash unit offering no TTL interface with the camera being used, so it’s manual everything!

But the exposure in terms of shutter speed is capped at 1/250th of a second due to the CAMERA – that is it’s highest synch speed.

The focal length of the lens is 50mm so I need to shoot at around f8 or f9 to obtain workable depth of field, so basic exposure settings are dictated.  This particular shot was achieved by balancing the light-to-subject distance along the lines of the inverse square law for each light.

But from the point of view of this post the big consideration is this – can I afford to have movement in the subject?

At 1/250th sec you’d think not.  Then you’d think “hang on, flash durations are a lot faster than that” – so perhaps I can…..or can I ?

Flash Duration & Subject Movement

Flash duration, in terms of action-stopping power, is not as simple or straight forward as you might think.

Consider the diagram below:

flash duration,fill flash,flash,shutter speed,photography,Andy Astbury,digital photography,wildlife photography

Flash Power Output curve plotted against Output duration (time).

The grey shaded area in the diagram is the “power output curve’ of the flash.

Most folk think that a flash is an “instant on, instant off” kind of thing – how VERY wrong they are!

When we set the power output on either the back panel of our SB800/580EX etc, or on the power pack of a studio flash unit, or indeed any other flash unit, we are setting a peak output limit.

We might set a Nikon SB800 to 1/4 power, or we might set channel B output on a Quadra Ranger to 132Watt/sec, but either way, we are dictating the maximum flash output power – the peak output limit. The “t 5 time” – or to be more correct the “t 0.5 time” is the total time duration where the flash output is at 50% or above of the selected peak output limit we set.

Just to clarify: we set say, 1/4th power output on the back of a Canon 580EX – this is the selected peak output limit. The t5 time for this is the total time duration where the light output is at or above 50% of that selected 1/4th power – NOT 50% of the flash units full power output – do not get confused over this!

So when it comes to total “light emission duration” we’ve got 3 different ways of looking at things:

  1. Total – and I mean TOTAL – duration; the full span of the output curve.
  2. T 0.5 – the duration of the flash where its output is at 50% or above that level set by the user – the peak output limit.
  3. T 0.1 – the duration of the flash where its output is at 10% or above that level set by the user.

Anyone looking at the diagram above can see that the total output emission time/flash duration is A LOT LONGER than the t5 time.  Usually you find that t5 times are somewhere around 1/3rd of the total emission time, or flash duration.

Getting back to our shot of Jo above, if my memory serves me correctly the BX heads I used for the shot had a t5 time of around 1/1500th sec.  So the TOTAL duration of the flash output would be around 1/500th sec.

So I can’t afford to have any movement in the subject that isn’t going to be arrested by 1/500th sec flash duration, let alone the 1/250th shutter speed.

Why? Well that 1/250th sec the shutter is open will comprise of 1/500th sec of flash photons entering the lens, and 1/500th sec of NOTHING entering the lens but AMBIENT LIGHT photons.

Let us break flash output down a bit more:

In the previous article I mentioned, I quoted a table of Nikon SB800 duration times.  At the top of the table was the SB800 1/1 or full output power flash duration.  All times quoted in that table were t5 times.

The one I want to concentrate on is that 1/1 full power t5 time of 1/1050th sec.

Even though Nikon try to tempt you into believing that the flash only emits light for 1/1050th sec it does in fact light the scene for a full 1/350th sec – most flash manufacturers units are quoted as t5 times.

Now in most cases when you might employ flash – which let’s face it, is as some sort of fill light in a general ambient/flash mixed exposure, this isn’t in reality, a big problem.  Reduced power multiple pulse AutoFP/HSS also makes it not a problem.

But if you are trying to stop high speed action – in other words “freeze time”, then it can become a major headache; especially when you need all the flash power you can get hold of.

Why? Let’s break the diagram above down to basics.

flash duration,fill flash,flash,shutter speed,photography,Andy Astbury,digital photography,wildlife photography

The darker shaded area represents the “tail” of the flash output – the area that can cause many problems when trying to stop high speed action.

  • The first 50% of the total light output is over and finished in the first 1/1050th of the total flash duration.
  • The other 50% of the total light output takes place over a further 1/525th sec, and is represented by the dark grey area – let’s call this area the flash “output tail”.  Some publications & websites refer to this tail as after-glow.  I always thought that ‘after glow” was something ladies did after a certain type of energetic activity!
  • The light will continue to decay for a full 1/525th sec after t5, until the output of light has died down to 0% and the full “burn time” of 1/350th sec has been reached.

That’s right – 1/1050th + 1/525th = 1/350th.

So, if our shutter speed is 1/350th sec or longer we are going to see some ghosting in our image caused by the movement of the subject during that extra 1/525th sec post t5 time.

I need to point out that most speedlight type flash units are “isolated-gate bipolar transistor” devices – that’s IGBT to you and me. Einstein studio flash units are also IGBT units – I’ll cover the implications of this in a later post, but for now you just need to know that the IGBT circuitry works to eliminate sub t5 output BUT doesn’t work if your speedlight is set to output at maximum power.  And if you need access to full 1/1 power with your speedlights for any reason then IGBT won’t help you.

Let’s see the problem in action as it were:

flash duration,fill flash,flash,shutter speed,photography,Andy Astbury,digital photography,wildlife photography

A bouncing golf ball shot at 1/250th sec using full power output on an SB800.
The ball is moving UPWARDS.
The blur between points A & B are caused by the “tail” or “after-glow” of the flash.

And the problem will be further exacerbated if there is ANY ambient light in scene from a window for instance, as this will boost the general scene illumination during that “tail end” 1/525th sec.

We might be well advised, if using any form of non-TTL flash mode, to use a shutter speed equal to, or shorter in duration to the t5 time, as in the shot below:

flash duration,fill flash,flash,shutter speed,photography,Andy Astbury,digital photography,wildlife photography

A bouncing golf ball shot at 1/2000th sec using full power output on an SB800.

All I’ve done in this second shot is go -3Ev on the shutter speed, +1Ev on the aperture and +2Ev on ISO speed.

Don’t forget, the flash is in MANUAL mode with a full power output.

With the D4 in front-curtain synch the full power, 1/350th sec flash pulse begins as the front shutter curtain starts to move, and it “burns” continuously while the 1/2000th sec “letter-box” shutter-slot travels across the sensor.

In both shots you may be wondering how I triggered the exposure. Sitting on the desk you can see a small black box with a jack plug sticking out the back – this is the audio sensor of a TriggerSmart audio/light/Infra Red combined trigger system.  As the golf ball strikes the desk the audio sensor picks up the noise and the control box triggers the camera shutter and hence the flash.

Hardy, down at the distributors,Flaghead, has been kind enough to send me one of these systems for incorporation into some long-term photography projects, and in a series of high speed flash workshops and training tutorials.  And I have to say that I’m mighty impressed with the system, and at the retail pricing point ownership of this product is a no-brainer.  The unit is going to feature in quite a few blog post in the near-future, but click HERE to email Hardy for more details.

Even though I constantly extol the virtues of the Nikon CLS system, there comes a time when its automatic calculations fight AGAINST you – and easy high speed photography becomes something of a chore.

Any form of flash exposure automation makes assumptions about what you are trying to do.  In certain circumstances these assumptions are pretty much correct.  But in others they can be so far wide of the mark that if you don’t turn the automation OFF you’ll never get the shot you want.

Wresting full control over speed lights from the likes of Nikons CLS gives you access to super-highspeed flash durations AND high shutter speeds without a lot of the synching problems incurred with studio monoblocks.

Liquid in Motion,flash duration,fill flash,flash,shutter speed,photography,Andy Astbury,digital photography,wildlife photography

Liquid in Motion – arrested at 1/8000th sec shutter speed using SB800’s at full 1/1 power.

Liquid in Motion,flash duration,fill flash,flash,shutter speed,photography,Andy Astbury,digital photography,wildlife photography

Liquid in Motion – arrested at 1/8000th sec shutter speed using SB800’s at full 1/1 power. A 100% crop from the shot above.

Liquid in Motion,flash duration,fill flash,flash,shutter speed,photography,Andy Astbury,digital photography,wildlife photography

“Scotch & Rocks All Over The Place”
Simple capture with manual speed lights at full power and 1/8000th shutter speed.

The shots above are all taken with 2x SB800s lighting the white background and 1 heavily defused SB800 acting as a top light.

One background light is set at 1/1 manual FP, the other to manual 1/1 SU-4 remote.  The top light is set to 1/8 power SU-4 remote.

The majority light in the shot is in fact that white background – it’s punching light back through the glass and liquid splash – the subject is backlit.

So, that background is being lit for a full 1/350th of a second.

But shooting in front curtain synch I’m using 1/8000th sec as a shutter speed, an exposure duration 3 stops shorter than the flash unit t5 time for full power. So in effect I’m using the combined background flash units as a very short-term continuous light source which lasts for 1/350th of a second, but the camera is only recording the very first 1/8000th sec – in other words, photons are still leaving the flash AFTER the rear shutter curtain has closed and the exposure is finished.

Finally, the shutter and flash are triggered by dropping the faux crushed ice through the IR sensor beam of the TriggerSmart unit.

This is very much along the lines of what’s termed HYPERSYNCH – a technique you can use with conventional slow burn studio flash units and certain types of 3rd party trigger units such as Pocket Wizards – but that’s yet another story, and is fraught with synch problems that you have program out of the system using the Pocket Wizard utility.

So, there’s more to come from me about flash in future posts, but for now just remember – there’s not a lot you can’t do with speed lights – as long as you’ve got enough of the little darlings!

Become a patron from as little as $1 per month, and help me produce more free content.

Patrons gain access to a variety of FREE rewards, discounts and bonuses.

Trap Focus

Trap Focus on the Nikon D4

Trap focus comes to my D4 – Yay!!!!!!!!

What was it Nikon said – “we left it off the D4 because no one wanted it”….or words to that effect.

Well, with today’s (March 18th 2014) update version 1.10 trap focus is back – in a fashion.

What is trap focus some may ask.  Well it’s basically pre-focusing on a particular distance or spot where you expect the subject to be or to pass through.

As the subject enters the frame and gets closer to the camera it’s also getting closer to the pre-focused distance, and when it reaches the set focus distance the camera actually detects the subject/image is sharp and so takes the shot.

Basically you sit there with the shutter button fully depressed, but no shots get taken until the camera AF system deems the subject is now in focus.

It’s a technique that a lot of sports photographers find very useful, but I find it has very limited use for my wildlife & natural history work.  Having said that, it’s got me out of a bind more than once over the years, but ever since the D4 came out you’ve not been able to use it.

The failing lay in the flawed D4 focus priority – even if you told it to only trip the shutter when the image was deemed ‘in focus’ by setting CS a1 & a2 to FOCUS, it would still fire as if a1 and a2 were set to release priority.

But the new firmware update v1.10 has given trap focus back to the D4, but before you start jumping up and down and getting all excited you need to know how to set it up, and bare in mind that “as a technique” trap focus might not suit what you had in mind.

Setup for D4 Trap Focus

  1. Update firmware to v1.10 – read the instructions FULLY before you attempt this, otherwise you may need another camera!
  2. Go to Custom Settings a2 AF-S priority selection and set to FOCUS.
  3. Go to Custom Settings a4 AF activation and set to AF-ON only – this takes to AF activation away from the shutter release button.
  4. Put a wide angle lens on the camera.
  5. Set the lens focus switch to M/A
  6. Set the D4 focus mode selector (the lever on left side of the body front) to AF
  7. Press the AF mode button and rotate the Command Dial (back one) to select AFS and NOT AFC.
  8. Rotate the Sub Command Dial (front one) to select S (single) and NOT Auto.
  9. Focus on your computers monitor screen using either the manual focus ring of the lens or the rear AF-ON button next to the Command Dial.
  10. If you’ve pressed the latter TAKE your thumb OFF!
  11. Move the camera directly away from the computer monitor screen so the image in the viewfinder goes soft.
  12. Jam your finger down on the shutter release. Nothing happens (if it does then start again!).
  13. Keeping that shutter button depressed and NOT touching the lens or AF button, move back towards the computers monitor screen – the shutter will fire when the monitor screen is sharp.

Got that?  Good!  Oh, and by the way, the award-winning shot you just missed – it would have been epic!

Now you’ve got a D4 that does trap focus.

Now for the trap focus caveats:

Trap Focus only works in AFS – not in AFC.

Trap Focus only works with a single AF sensor, AFS-S – so correct prediction of that one AF sensor/subject alignment to get the required ‘bits” in sharp focus and DoF is going to be difficult.

wildlife photography, common Kestrel, photography technique,manual focus trap,trap focus

Common Kestrel Landing
©Andy Astbury/Wildlife in Pixels

Do NOT think you can pull this wildlife shot off using TRAP FOCUS.

By the time the camera has detected the sharp focus and got over the system lock time and triggered the shutter, the bird will be way closer to the camera – and sharp focus in the resulting image will be behind the tail!

This shot is done with a manual focus trap – a completely different technique, as described HERE

The subject is too small and so to close to the camera and 500mm lens for trap focus to work effectively.

However, if you are doing sports photography for instance, you are imaging subjects that are much bigger and a lot further away.

A 500mm f4 on an FX body has over 2 meters depth of field at f5.6 when focused at 40 meters.  Take a baseball match for instance – not that I’ve ever covered one mind!

Set the single AF sensor focus distance at home plate.

Then tilt the camera up slightly, or move the sensor with the Dpad so it can’t see/is not overlaying what you just focused on. Hold the shutter button down and wait for a player to make a dive for home plate.  As he enters the area of the AF sensor the camera will fire continually if you’re in continuous shooting mode, and will only stop when the camera detects focus has been lost.

Works like a charm!

The key thing is that the depth of field generated by the focus distance makes trap focus work for you – at much shorter distances where depth of field is down to an inch or so if you’re lucky, then couple that with a fast subject approach speed, and trap focus will fall down as a reliable method.

If I’m doing studio flash work like this:

WIP00048398

which is never often enough any more! – I sometimes find it useful to use trap focus because it can help doing hand held work under the lowish flash unit modelling lights when you want to make sure eyes are sharp.

Using Trap Focus in a sort of 'bastardised' manner can help you maintain sharp focus on models eyes whilst giving you freedom to move around, change composition, zoom etc. by controlling the sharpness of the image with the lens focus ring.

Using Trap Focus in a sort of ‘bastardised’ manner can help you maintain sharp focus on models eyes whilst giving you freedom to move around, change composition, zoom etc. by controlling the sharpness of the image with the lens focus ring.

Like I said earlier, it’s a technique that can get you out of trouble every now and again, but up until today you hadn’t got recourse to it on the D4.

But you seriously need to understand the limitations of trap focus deployment before you rush out and use it – you could be very disappointed with the results, and it’ll be all your own fault for trying to bang a square peg through a round hole.

Become a patron from as little as $1 per month, and help me produce more free content.

Patrons gain access to a variety of FREE rewards, discounts and bonuses.

What Shutter Speed?

Shutter speed, and the choices we make over it, can have a profound effect on the outcome of the final image.

Now everyone has a grasp of shutter speed and how it relates to subject movement – at least I hope they do!

We can either use a fast shutter speed to freeze constant action, or we can use a slow shutter speed to:

  • Allow us to capture movement of the subject for creative purposes
  • Allow us to use a lower ISO/smaller aperture when shooting a subject with little or no movement.

 

Fast Shutter Speed – I need MORE LIGHT Barry!

shutter speed,Red Kite,Andy Astbury,action photography,Wildlife in Pixels

1/8000th sec @ f8, Nikon D4 and 500mm f4

Good strongish sunlight directly behind the camera floods this Red Kite with light when it rolls over into a dive.  I’m daft enough to be doing this session with a 500mm f4 that has very little in the way of natural depth-of-field so I opt to shoot at f8.  Normally I’d expect to be shooting the D4 at 2000iso for action like this but my top end shutter speed is 1/8000th and this shutter speed at f8 was slightly too hot on the exposure front, so I knocked the ISO down to 1600 just to protect the highlights a little more.

Creative Slow Shutter Speed – getting rid of light.

shutter speed,Red Kite,Andy Astbury,action photography,Wildlife in Pixels

1/5th sec @ f22

I wanted to capture the movement in a flock of seagulls taking off from the water, so now I have to think the opposite way to the Kite shot above.

Firstly I need to think carefully about the length of shutter speed I choose: too short and I won’t capture enough movement; and too long will bring a vertical movement component into the image from me not being able to hold the camera still – so I opt for 1/5th sec.

Next to consider is aperture.  Diffraction on a deliberate motion blur has little impact, but believe it or not focus and depth of field DO – go figure!

So I can run the lens at f16/20/22 without much of a worry, and 100 ISO gets me the 1/5th sec shutter speed I need at f22.

 

Slow Shutter  Rear Curtain Synch Flash

We can use a combination of both techniques in one SINGLE exposure with the employment of flash, rear curtain synch and a relatively slow shutter speed:

shutter speed,Red Kite,Andy Astbury,action photography,Wildlife in Pixels

6/10th sec @ f3.5 -1Ev rear curtain synch flash

A technique the “Man Cub” uses to great effect in his nightclub photography, here he’s rotated the camera whilst the shutter is open, thus capturing the glowing LEDs and other highlights as circular trails.  As the shutter begins to close, the scene is lit by the 1/10,000th sec burst of light from the reduced power, rear curtain synched SB800 flash unit.

But things are not always quite so cut-and-dried – are they ever?

Assuming the lens you use is tack sharp and the subject is perfectly focused there are two factors that have a direct influence upon how sharp the shot will be:

  • System Vibration – caused by internal vibrations, most notably from the mirror being activated.
  • Camera Shake – caused by external forces like wind, ground vibration or you not holding the camera properly.

Shutter Speed and System Vibration

There was a time when we operated on the old adage that the slowest shutter speed you needed for general hand held shooting was equal to 1/focal length.

So if you were using a 200mm lens you shot with a minimum shutter speed of 1/200th sec, and, for the most part, that rule served us all rather well with 35mm film; assuming of course that 1/200th sec was sufficient to freeze the action!

Now this is a somewhat optimistic rule and assumes that you are hand holding the camera using a good average technique.  But put the camera on a tripod and trigger it with a cable or remote release, and it’s a whole new story.

Why?  Because sticking the camera on a tripod and not touching it during the exposure means that we have taken away the “grounding effect” of our mass from the camera and lens; thus leaving the door open to for system vibration to ruin our image.

 

How Does System Vibration Effect an Image?

Nowadays we live in a digital world with very high resolution sensors instead of film. and the very nature of a sensor – its pixel structure (to use a common parlance) has a direct influence on minimum shutter speed.

So many camera owners today have the misguided notion that using a tripod is the answer to all their prayers in terms of getting sharp images – sadly this ain’t necessarily so.

They also have the other misguided notion that “more megapixels” makes life easier – well, that definitely isn’t true!

The smallest detail that can be recorded by a sensor is a point of light in the projected image that has the same dimensions a one photosite/pixel on that sensor. So, even if a point is SMALLER than the photosite it strikes, its intensity or luminance will effect the whole photosite.

shutter speed,Red Kite,Andy Astbury,action photography,Wildlife in Pixels,vibration reduction,camera shake,mirror slap,sharp images.

A point of light smaller than 1 photosite (left) has an effect on the whole photosite (right).

If the lens is capable of resolving this tiny detail, our sensor – in this case (right) – isn’t, and so the lens out-resolves the sensor.

But let’s now consider this tiny point detail and how it effects a sensor of higher resolution; in other words, a sensor with smaller photosites:

shutter speed,Red Kite,Andy Astbury,action photography,Wildlife in Pixels,vibration reduction,camera shake,mirror slap,sharp images

The same detail projected onto a higher resolution sensor (right). Though not shown, the entire photosite will be effected, but its surface area represents a much small percentage of the whole sensor area – the sensor now matches the lens resolution.

Now this might seem like a good thing; after all, we can resolve smaller details.  But, there’s a catch when it comes to vibration:

shutter speed,Red Kite,Andy Astbury,action photography,Wildlife in Pixels,vibration reduction,camera shake,mirror slap,sharp images

A certain level of vibration causes the small point of light to vibrate. The extremes of this vibration are represented by the the outline circles.

The degree of movement/vibration/oscillation is identical on both sensors; but the resulting effect on the exposure is totally different:

shutter speed,Red Kite,Andy Astbury,action photography,Wildlife in Pixels,vibration reduction,camera shake,mirror slap,sharp images

The same level of vibration has more effect on the higher resolution sensor.

If you read the earlier post on sensor resolution and diffraction HERE you’ll soon identify the same concept.

The upshot of it all is that “X” level of internal system vibration has a greater effect on a higher resolution sensor than it does on a lower resolution sensor.

Now what’s all this got to with shutter speed I hear you ask.  Well, whereas 1/focal length used to work pretty well back in the day, we need to advance the theory a little.

Let’s look at four shots from a Nikon D3, shot with a 300mm f2.8, mounted on a tripod and activated by a remote (so no finger-jabbing on the shutter button to effect the images).

Also please note that the lens is MANUALLY FOCUSED just once, so is sharply on the same place for all 4 shots.

These images are full resolution crops, I strongly recommend that you click on all four images to open them in new tabs and view them sequentially.

shutter speed,Red Kite,Andy Astbury,action photography,Wildlife in Pixels,vibration reduction,camera shake,mirror slap,sharp images

Shutter = 1/1x (1/320th) Focal Length. No VR, No MLU (Mirror Lock Up). Camera on Tripod+remote release.

shutter speed,Red Kite,Andy Astbury,action photography,Wildlife in Pixels,vibration reduction,camera shake,mirror slap,sharp images

Shutter = 1/2x (1/640th) Focal length. No VR. No MLU. Camera on Tripod+remote release.

shutter speed,Red Kite,Andy Astbury,action photography,Wildlife in Pixels,vibration reduction,camera shake,mirror slap,sharp images

Shutter = 1/2x Focal length + VR. No MLU. Camera on Tripod+remote release.

shutter speed,Red Kite,Andy Astbury,action photography,Wildlife in Pixels,vibration reduction,camera shake,mirror slap,sharp images

Shutter = 1/2x Focal length. Camera on Tripod+remote release + MLU – NO VR + Sandbag.

Now the thing is, the first shot at 1/320th looks crap because it’s riddled with system vibration – mainly a result of what’s termed ‘mirror slap’.  These vibrations travel up the lens barrel and are then reflected back by the front of the lens.  You basically end up with a packet of vibrations running up and down the lens barrel until they eventually die out.

These vibrations in effect make the sensor and the image being projected onto it ‘buzz, shimmy and shake’ – thus we get a fuzzy image; and all the fuzziness is down to internal system vibration.

We would actually have got a sharper shot hand holding the lens – the act of hand holding kills the vibrations!

As you can see in shot 2 we get a big jump in vibration reduction just by cranking the shutter speed up to 2x focal length (actually 1/640th).

The shot would be even sharper at 3x or 4x, because the vibrations are of a set frequency and thus speed of travel, and the faster the shutter speed we use the sooner we can get the exposure over and done with before the vibrations have any effect on the image.

We can employ ‘mirror up shooting’ as a technique to combat these vibrations; by lifting the mirror and then pausing to give the vibrations time to decay; and we could engage the lens VR too, as with the 3rd shot.  Collectively there has been another significant jump in overall sharpness of shot 3; though frankly the VR contribution is minimal.

I’m not a very big fan of VR !

In shot 4 you might get some idea why I’m no fan of VR.  Everything is the same as shot 3 except that the VR is OFF, and we’ve added a 3lb sandbag on top of the lens.  This does the same job as hand holding the lens – it kills the vibrations stone dead.

When you are shooting landscapes with much longer exposures/shutter speeds THE ONLY way to work is tripod plus mirror up shooting AND if you can stand to carry the weight, a good heavy sand bag!

Shot 4 would have been just as sharp if the shutter had been open for 20 seconds, just as long as there was no movement at all in the subject AND there was no ground vibration from a passing heavy goods train (there’s a rail track between the camera and the subject!).

For general tripod shooting of fairly static subjects I was always confident of sharp shots on the D3 (12Mb) at 2x focal length.

But since moving to a 16Mp D4 I’ve now found that sometimes this let’s me down, and that 2.5x focal length is a safer minimum to use.

But that’s nothing compared to what some medium format shooters have told me; where they can still detect the effects of vibration on super high resolution backs such as the IQ180 etc at as much as 5x focal length – and that’s with wide angle landscape style lenses!

So, overall my advice is to ALWAYS push for the highest shutter speed you can possibly obtain from the lighting conditions available.

Where this isn’t possible you really do need to perfect the skill of hand holding – once mastered you’ll be amazed at just how slow a shutter speed you can use WITHOUT employing the VR system (VR/IS often causes far more problems than it would apparently solve).

For long lens shooters the technique of killing vibration at low shutter speeds when the gear is mounted on a tripod is CRITICAL, because without it, the images will suffer just because of the tripod!

The remedy is simple – it’s what your left arm is for.

So, to recap:

  • If you shot without a tripod, the physical act of hand holding – properly – has a tendency to negate internal system vibrations caused by mirror slap etc just because your physical mass is in direct contact with the camera and lens, and so “damps” the vibrations.
  • If you shoot without a tripod you need to ensure that you are using a shutter speed fast enough to negate camera shake.
  • If you shoot without a tripod you need to ensure that you are using a shutter speed fast enough to FREEZE the action/movement of your subject.

 

Camera Shake and STUPID VR!

Now I’m going to have to say at the outset that this is only my opinion, and that this is pointed at Nikons VR system, and I don’t strictly know if Canons IS system works on the same math.

And this is not relevant to sensor-based stabilization, only the ‘in the lens’ type of VR.

The mechanics of how it works are somewhat irrelevant, but what is important is its working methodology.

Nikon VR works at a frequency of 1000Hz.

What is a “hertz”?  Well 1Hz = 1 full frequency cycle per second.  So 1000Hz = 1000 cycles per second, and each cycle is 1/1000th sec in duration.

shutter speed,Red Kite,Andy Astbury,action photography,Wildlife in Pixels,vibration reduction,camera shake,mirror slap,sharp images

Full cycle sine wave showing 1,0.5 & 0.25 cycles.

Now then, here’s the thing.  The VR unit is measuring the angular momentum of the lens movement at a rate of 1000 times per second. So in other words it is “sampling” movement every 1/1000th of a second and attempting to compensate for that movement.

But Nyquist-Shannon sampling theory – if you’re up for some mind-warping click HERE – says that effective sampling can only be achieved at half the working frequency – 500 cycles per second.

What is the time duration of one cycle at a frequency of 500Hz?  That’s right – 1/500th sec.

So basically, for normal photography, VR ceases to be of any real use at any shutter speed faster than 1/500th.

Remember shot 3 with the 300mm f2.8 earlier – I said the VR contribution at 1/640th was minimal?  Now you know why I said it!

Looking again at the frequency diagram above, we may get a fairly useful sample at 1/4 working frequency – 1/250th sec; but other than that my personal feelings about VR is that it’s junk – under normal circumstances it should be turned OFF.

What circumstances do I class as abnormal? Sitting on the floor of a heli doing ariel shots out of the open door springs to mind.

If you are working in an environment where something is vibrating YOU while you hand hold the camera then VR comes into its own.

But if it’s YOU doing the vibrating/shaking then it’s not going to help you very much in reality.

Yes, it looks good when you try it in the shop, and the sales twat tells you it’ll buy you three extra stops in shutter speed so now you can get shake-free shots at 1/10th of a second.

But unless you are photographing an anaesthetized Sloth or a statue, that 1/10th sec shutter speed is about as much use to you as a hole in the head. VR/IS only stabilizes the lens image – it doesn’t freeze time and stop a bird from flapping its wings, or indeed a brides veil from billowing in the breeze.

Don’t get me wrong; I’m not saying VR/IS is a total waste of time in ALL circumstances.  But I am saying that it’s a tool that should only be deployed when you need it, and YOU need to understand WHEN that time is; AND you need to be aware that it can cause major image problems if you use it in the wrong situation.

Become a patron from as little as $1 per month, and help me produce more free content.

Patrons gain access to a variety of FREE rewards, discounts and bonuses.

In Conclusion

shutter speed,Red Kite,Andy Astbury,action photography,Wildlife in Pixels,vibration reduction,camera shake,mirror slap,sharp images

1/2000th sec is sufficient to pretty much freeze the forward motion of this eagle, but not the downward motion of the primary feathers.

This rather crappy shot of a White-tailed eagle might give you food for thought, especially if compared with the Red Kite at the start of the post.

The primary feathers are soft because we’ve run out of depth of field.  But, notice the motion blur on them too?  Even though 1/2000th sec in conjunction with a good panning technique is ample to freeze the forward motion of the bird, that same 1/2000th sec is NOT fast enough to freeze the speed of the descending primary feathers on the end of that 4 foot lever called a wing.

Even though your subject as a whole might be still for 1/60th sec or longer, unless it’s dead, some small part of it will move.  The larger the subject is in the frame then more apparent that movement will be.

Getting good sharp shots without motion blur in part of the subject, or camera shake and system vibration screwing up the entire image is easy; as long as you understand the basics – and your best tool to help you on your way is SHUTTER SPEED.

A tack sharp shot without blur but full of high iso noise is vastly superior to a noiseless shot full of blur and vibration artefacting.

Unless it’s done deliberately of course – “H-arty Farty” as my mate Ole Martin Dahle calls it!

Become a patron from as little as $1 per month, and help me produce more free content.

Patrons gain access to a variety of FREE rewards, discounts and bonuses.

Auto Focus & Shooting Speed

Auto Focus & Shooting Speed

Firstly, an apology to my blog followers for the weird blog post notification this morning – I had one of those “senior moments” where I confused the Preview button with Publish – DOH!

There is truly no hope………..!  But let’s get on….

The effectiveness of auto focus and its ability to track and follow a moving subject IS INFLUENCED by frame rate.

Why is this I here you ask.

Well, it’s simple, and logical if you think about it – where are your AF sensors?

They’re in the bottom of your cameras mirror box.

Most folk thing that the mirror just sits there, reflecting at 45 degrees all the light that comes through the lens up to the focus screen and viewfinder.  The fact that the mirror is still DOWN when they are using the auto focus leads most people into thinking the AF sensor array is elsewhere – that’s if they can be bothered to think about it in the first place.

 

So how does the AF array SEE the scene?

Because the center area of the main mirror is only SEMI silvered, and in reality light from the lens does actually pass through it.

 

auto focus,how auto focus works,main mirror,dslr mirror,mirror box,photography,camera

Main mirror of a Nikon D2Xs in the down position.

 

Now I don’t recommend you jam a ball point pen under your own main mirror, but in the next image:

 

auto focus,how auto focus works,main mirror,dslr mirror,mirror box,photography,camera

Main mirror of a Nikon D2Xs lifted so you can see the secondary mirror.

 

Now there’s a really good diagram of the mechanics at http://www.reikan.co.uk/ – makers of FoCal software, and I’ll perhaps get my goolies cut of for linking to it, but here it is:

 

This image belongs to Reikan

 

As you can now hopefully understand, light passes through the mirror and is reflected downwards by the secondary mirror into the AF sensor array.

As long as the mirror is DOWN the auto focus sensor array can see – and so do its job.

Unless the MAIN mirror is fully down, the secondary mirror is not in the correct position to send light to the auto focus sensor array – SO GUESS WHAT – that’s right, your AF ain’t working; or at least it’s just guessing.

So how do we go about giving the main mirror more “down time”?  Simply by slowing the frame rate down is how!

When I’m shooting wildlife using a continuous auto focus mode then I tend to shot at  5 frames per second in Continuous LOW (Nikon-speak) and have the Continuous HIGH setting in reserve set for 9 frames per second.

 

The Scenario Forces Auto Focus Settings Choices

From a photography perspective we are mainly concerned with subjects CROSSING or subjects CLOSING our camera position.

Once focus is acquired on a CROSSING subject (one that’s not changing its distance from the camera) then I might elect to use a faster frame rate as mirror-down-time isn’t so critical.

But subjects that are either CLOSING or CROSSING & CLOSING are far more common; and head on CLOSING subjects are the ones that give our auto focus systems the hardest workout – and show the system failures and short-comings the most.

Consider the focus scale on any lens you happen to have handy – as you focus closer to you the scale divisions get further apart; in other words the lens focus unit has to move further to change from say 10 meters to 5 meters than it does to move from 15 meters to 10 meters – it’s a non-linear scale of change.

So the closer a subject comes to your camera position the greater is the need for the auto focus sensors to see the subject AND react to its changed position – and yes, by the time it’s acquired focus and is ready to take the next frame the subject is now even closer – and things get very messy!

That’s why high grade dSLR auto focus systems have ‘predictive algorithms’ built into them.

Also. the amount of light on the scene AND the contrast between subject and background ALL effect the ability of the auto focus to do its job.  Even though most pro-summer and all pro body systems use phase detection auto focus, contrast between the subject to be tracked and its background does impact the efficiency of the overall system.

A swan against a dark background is a lot easier on the auto focus system than a panther in the jungle or a white-tailed eagle against a towering granite cliff in Norway, but the AF system in most cameras is perfectly capable of acquiring, locking on and tracking any of the above subjects.

So as a basic rule of thumb the more CLOSING a subject is then the LOWER your frame rate needs to be if you are looking for a sharp sequence of shots.  Conversely the more CROSSING a subject is then the higher the frame rate can be and you might still get away with it.

 

Points to Clarify

The mechanical actions of an exposure are:

  1. Mirror lifts
  2. Front shutter curtain falls
  3. Rear shutter curtain falls
  4. Mirror falls closed (down)

Here’s the thing; the individual time taken for each of these actions is the same ALL the time – irrespective of whether the shutter speed is 1/8000th sec or 8 sec; it’s the gap in between 2. & 3. that makes the difference.

And it’s the ONLY thing shutter-related we’ve got any control over.

So one full exposure takes t1 + t2 + shutter speed + t3 +t4, and the gap between t4 and the repeat of t1 on the next frame is what gives us our mirror down time between shots for any given frame rate.  So it’s this time gap between t4 and the repeat of t1 that we lengthen by dropping the shooting speed frame rate.

There’s another problem with using 10 or 11 frames per second with Nikon D3/D4 bodies.

10 fps on a D3 LOCKS the exposure to the values/settings of the first frame in the burst.

11 fps on a D3 LOCKS both exposure AND auto focus to the values/settings of the first frame in the burst.

11 fps on a D4 LOCKS both exposure AND auto focus* to those of the first frame in the burst – and it’s one heck of a burst to shoot where all the shots can be out of focus (and badly exposed) except the first one!

*Page 112 of the D4 manual says that at 11fps the second and subsequent shots in a burst may not be in focus or exposed correctly.

That’s Nikon-speak for “If you are photographing a statue or a parked car ALL your shots will be sharp and exposed the same; but don’t try shooting anything that’s getting closer to the camera, and don’t try shooting things where the frame exposure value changes”.

 

There’s a really cool video of 11 fps slowed right down with 5000fps slo-mo  HERE  but for Christ’ sake turn your volume down because the ST is some Marlene Dietrich wannabe!

So if you want to shoot action sequences that are sharp from the first frame to the last then remember – DON’T be greedy – SLOW DOWN!

Become a patron from as little as $1 per month, and help me produce more free content.

Patrons gain access to a variety of FREE rewards, discounts and bonuses.