Monitor Calibration Update

Monitor Calibration Update

Okay, so I no longer NEED a new monitor, because I’ve got one – and my wallet is in Leighton Hospital Intensive Care Unit on the critical list..

What have you gone for Andy?  Well if you remember, in my last post I was undecided between 24″ and 27″, Eizo or BenQ.  But I was favoring the Eizo CS2420, on the grounds of cost, both in terms of monitor and calibration tool options.

But I got offered a sweet deal on a factory-fresh Eizo CS270 by John Willis at Calumet – so I got my desire for more screen real-estate fulfilled, while keeping the costs down by not having to buy a new calibrator.

%name Monitor Calibration Update

But it still hurt to pay for it!

Monitor Calibration

There are a few things to consider when it comes to monitor calibration, and they are mainly due to the physical attributes of the monitor itself.

In my previous post I did mention one of them – the most important one – the back light type.

CCFL and WCCFL – cold cathode fluorescent lamps, or LED.

CCFL & WCCFL (wide CCFL) used to be the common type of back light, but they are now less common, being replaced by LED for added colour reproduction, improved signal response time and reduced power consumption.  Wide CCFL gave a noticeably greater colour reproduction range and slightly warmer colour temperature than CCFL – and my old monitor was fitted with WCCFL back lighting, hence I used to be able to do my monitor calibration to near 98% of AdobeRGB.

CCFL back lights have one major property – that of being ‘cool’ in colour, and LEDs commonly exhibit a slightly ‘warmer’ colour temperature.

But there’s LEDs – and there’s LEDs, and some are cooler than others, some are of fixed output and others are of a variable output.

The colour temperature of the backlighting gives the monitor a ‘native white point’.

The ‘brightness’ of the backlight is really the only true variable on a standard type of LCD display, and the inter-relationship between backlight brightness and colour temperature, and the size of the monitors CLUT (colour look-up table) can have a massive effect on the total number of colours that the monitor can display.

Industry-standard documentation by folk a lot cleverer than me has for years recommended the same calibration target settings as I have alluded to in previous blog posts:

White Point: D65 or 6500K

Brightness: 120 cdm² or candelas per square meter

Gamma: 2.2

Screen Shot 2017 04 02 at 13.04.25 Monitor Calibration Update

The ubiquitous ColorMunki Photo ‘standard monitor calibration’ method setup screen.

This setup for ‘standard monitor calibration’ works extremely well, and has stood me in good stead for more years than I care to add up.

As I mentioned in my previous post, standard monitor calibration refers to a standard method of calibration, which can be thought of as ‘software calibration’, and I have done many print workshops where I have used this method to calibrate Eizo ColorEdge and NEC Spectraviews with great effect.

However, these more specialised colour management monitors have the added bonus of giving you a ‘hardware monitor calbration’ option.

To carry out a hardware monitor calibration on my new CS270 ColorEdge – or indeed any ColorEdge – we need to employ the Eizo ColorNavigator.

The start screen for ColorNavigator shows us some interesting items:

colnav1 Monitor Calibration Update

The recommended brightness value is 100 cdm² – not 120.

The recommended white point is D55 not D65.

Thank God the gamma value is the same!

Once the monitor calibration profile has been done we get a result screen of the physical profile:

colnav2 Monitor Calibration Update

Now before anyone gets their knickers in a knot over the brightness value discrepancy there’s a couple of things to bare in mind:

  1. This value is always slightly arbitrary and very much dependent on working/viewing conditions.  The working environment should be somewhere between 32 and 64 lux or cdm² ambient – think Bat Cave!  The ratio of ambient to monitor output should always remain at between 32:75/80 and 64:120/140 (ish) – in other words between 1:2 and 1:3 – see earlier post here.
  2. The difference between 100 and 120 cdm² is less than 1/4 stop in camera Ev terms – so not a lot.

What struck me as odd though was the white point setting of D55 or 5500K – that’s 1000K warmer than I’m used to. (yes- warmer – don’t let that temp slider in Lightroom cloud your thinking!).

1000k Monitor Calibration UpdateAfter all, 1000k is a noticeable variation – unlike the brightness 20cdm² shift.

Here’s the funny thing though; if I ‘software calibrate’ the CS270 using the ColorMunki software with the spectro plugged into the Mac instead of the monitor, I visually get the same result using D65/120cdm² as I do ‘hardware calibrating’ at D55 and 100cdm².

The same that is, until I look at the colour spaces of the two generated ICC profiles:

profile Monitor Calibration Update

The coloured section is the ‘software calibration’ colour space, and the wire frame the ‘hardware calibrated’ Eizo custom space – click the image to view larger in a separate window.

The hardware calibration profile is somewhat larger and has a slightly better black point performance – this will allow the viewer to SEE just that little bit more tonality in the deepest of shadows, and those perennially awkward colours that sit in the Blue, Cyan, Green region.

It’s therefore quite obvious that monitor calibration via the hardware/ColorNavigator method on Eizo monitors does buy you that extra bit of visual acuity, so if you own an Eizo ColorEdge then it is the way to go for sure.

Having said that, the differences are small-ish so it’s not really worth getting terrifically evangelical over it.

But if you have the monitor then you should have the calibrator, and if said calibrator is ‘on the list’ of those supported by ColorNavigator then it’s a bit of a JDI – just do it.

You can find the list of supported calibrators here.

Eizo and their ColorNavigator are basically making a very effective ‘mash up’ of the two ISO standards 3664 and 12646 which call for D65 and D50 white points respectively.

Why did I go CHEAP ?

Well, cheaper…..

Apart from the fact that I don’t like spending money – the stuff is so bloody hard to come by – I didn’t want the top end Eizo in either 27″ or 24″.

With the ‘top end’ ColorEdge monitors you are paying for some things that I at least, have little or no use for:

  • 3D CLUT – I’m a general sort of image maker who gets a bit ‘creative’ with my processing and printing.  If I was into graphics and accurate repro of Pantone and the like, or I specialised in archival work for the V & A say, then super-accurate colour reproduction would be critical.  The advantage of the 3D CLUT is that it allows a greater variety of SUBTLY different tones and hues to be SEEN and therefore it’s easier to VISUALLY check that they are maintained when shifting an image from one colour space to another – eg softproofing for print.  I’m a wildlife and landscape photographer – I don’t NEED that facility because I don’t work in a world that requires a stringent 100% colour accuracy.
  • Built-in Calibrator – I don’t need one ‘cos I’ve already got one!
  • Built-in Self-Correction Sensor – I don’t need one of those either!

So if your photography work is like mine, then it’s worth hunting out a ‘zero hours’ CS270 if you fancy the extra screen real-estate, and you want to spend less than if buying its replacement – the CS2730.  You won’t notice the extra 5 milliseconds slower response time, and the new CS2730 eats more power – but you do get a built-in carrying handle!

 

Good Contrast Control in Lightroom CC

Contrast Control in Lightroom

Learning how to deploy proper contrast control in Lightroom brings with it two major benefits:

  • It allows you to reveal more of your camera sensors dynamic range.
  • It will allow you to reveal considerably more image detail.

ContrastControl Good Contrast Control in Lightroom CC

I have posted on this subject before, under the guise of neutralising Lightrooms ‘hidden background adjustments’.  But as Lightroom CC 2015 evolves, trying to ‘nail’ the best way of doing something becomes like trying to hit a moving target.

For the last few months I’ve been using this (for me) new method – and to be honest it works like a charm!

It involves the use of the ‘zero’ preset together with a straight process version swap around, as illustrated in the before/after shot above and in the video linked below.  This video is best viewed on my YouTube channel:

The process might seem a little tedious at first, but it’s really easy when you get used to it, and it works on ALL images from ALL cameras.

Here is a step-by-step guide to the various Lightroom actions you need to take in order to obtain good contrast control:

Contrast Control Workflow Steps:

1. Develop Module Presets: Choose ZEROED
2. Camera Calibration Panel: Choose CAMERA NEUTRAL
3. Camera Calibration Panel: Choose Process Version 2010
4. Camera Calibration Panel: Choose Process Version 2012
5. Basics Panel: Double Click Exposure (goes from -1 to 0)
6. Basics Panel: Adjust Black Setting to taste if needed.
7. Details Panel: Reset Sharpening to default +25
8. Details Panel: Reset Colour Noise to default +25
9. Lens Corrections Panel: Tick Remove Chromatic Aberration.

Now that you’ve got good contrast control you can set about processing your image – just leave the contrast slider well alone!

Why is contrast control important, and why does it ‘add’ so much to my images Andy?

We are NOT really reducing the contrast of the raw file we captured.  We are simply reducing the EXCESSIVE CONTRAST that Lightroom ADDS to our files.

  • Lightroom typically ADDS a +33 contrast adjustment but ‘calls it’ ZERO.
  • Lightroom typically ADDS a medium contrast tone curve but ‘calls it’ LINEAR.

Both of this are contrast INCREASES, and any increase in contrast can be seen as a ‘compression’ of the tonal space between BLACK and WHITE.  This is a dynamic range visualisation killer because it crushes the ends of the midtone range.

It’s also a detail killer, because 99% of the subject detail is in the mid tone range.  Typically the Lightroom tonal curve range for midtones is 25% to 75%, but Lightroom is quite happy to accept a midtone range of 10% to 90% – check those midtone arrow adjusters at the bottom edge of the parametric tone curve!

I hope you find this post useful folks, and don’t forget to watch the video at full resolution on my YouTube Channel.

 

Raw File Compression

Raw File Compression.

Today I’m going to give you my point of view over that most vexatious question – is LOSSLESS raw file compression TRULY lossless?

I’m going to upset one heck of a lot of people here, and my chances of Canon letting me have any new kit to test are going to disappear over the horizon at a great rate of knots, but I feel compelled to post!

What prompts me to commit this act of potential suicide?

It’s this shot from my recent trip to Norway:

FW1Q1351 2 900x600 Raw File Compression

Direct from Camera

FW1Q1351 900x600 Raw File Compression

Processed in Lightroom

I had originally intended to shoot Nikon on this trip using a hire 400mm f2.8, but right at the last minute there was a problem with the lens that couldn’t be sorted out in time, so Calumet supplied me with a 1DX and a 200-400 f4 to basically get me out of a sticky situation.

As you should all know by now, the only problems I have with Canon cameras are their  short Dynamic Range, and Canons steadfast refusal to allow for uncompressed raw recording.

The less experienced shooter/processor might look at the shot “ex camera” and be disappointed – it looks like crap, with far too much contrast, overly dark shadows and near-blown highlights.

Shot on Nikon the same image would look more in keeping with the processed version IF SHOT using the uncompressed raw option, which is something I always do without fail; and the extra 3/4 stop dynamic range of the D4 would make a world of difference too.

Would the AF have done as good a job – who knows!

The lighting in the shot is epic from a visual PoV, but bad from a camera exposure one. A wider dynamic range and zero raw compression on my Nikon D4 would allow me to have a little more ‘cavalier attitude’ to lighting scenarios like this – usually I’d shoot with +2/3Ev permanently dialled into the camera.  Overall the extra dynamic range would give me less contrast, and I’d have more highlight detail and less need to bump up the shadow areas in post.

In other words processing would be easier, faster and a lot less convoluted.

But I can’t stress enough just how much detrimental difference LOSSLESS raw file compression CAN SOMETIMES make to a shot.

Now there is a lot – and I mean A LOT – of opinionated garbage written all over the internet on various forums etc about lossless raw file compression, and it drives me nuts.  Some say it’s bad, most say it makes no difference – and both camps are WRONG!

Sometimes there is NO visual difference between UNCOMPRESSED and LOSSLESS, and sometimes there IS.  It all depends on the lighting and the nature of the scene/subject colours and how they interact with said lighting.

The main problem with the ‘it makes no difference’ camp is that they never substantiate their claims; and if they are Canon shooters they can’t – because they can’t produce an image with zero raw file compression to compare their standard lossless CR2 files to!

So I’ve come up with a way of illustrating visually the differences between various levels of raw file compression on Nikon using the D800E and Photoshop.

But before we ‘get to it’ let’s firstly refresh your understanding. A camera raw file is basically a gamma 1.0, or LINEAR gamma file:

LinVsHum3 900x271 Raw File Compression

Linear (top) vs Encoded Gamma

The right hand 50% of the linear gamma gradient represents the brightest whole stop of exposure – that’s one heck of a lot of potential for recording subtle highlight detail in a raw file.

It also represents the area of tonal range that is frequently most effected by any form of raw file compression.

Neither Nikon or Canon will reveal to the world the algorithm-based methods they use for lossless or lossy raw file compression, but it usually works by a process of ‘Bayer Binning’.

Bayer Pattern Raw File Compression

If we take a 2×2 block, it contains 2 green, 1 red and 1 blue photosite photon value – if we average the green value and then interpolate new values for red and blue output we will successfully compress the raw file.  But the data will be ‘faux’ data, not real data.

The other method we could use is to compress the tonal values in that brightest stop of recorded highlight tone – which is massive don’t forget – but this will result in a ’rounding up or down’ of certain bright tonal values thus potentially reducing some of the more subtle highlight details.

We could also use some variant of the same type of algorithm to ‘rationalise’ shadow detail as well – with pretty much the same result.

In the face of Nikon and Canons refusal to divulge their methodologies behind raw file compression, especially lossless, we can only guess what is actually happening.

I read somewhere that with lossless raw file compression the compression algorithms leave a trace instruction about what they have done and where they’ve done it in order that a raw handler programme such as Lightroom can actually ‘undo’ the compression effects – that sounds like a recipe for disaster if you ask me!

Personally I neither know nor do I care – I know that lossless raw file compression CAN be detrimental to images shot under certain conditions, and here’s the proof – of a fashion:

Let’s look at the following files:

14bitUC1 258x400 Raw File Compression

Image 1: 14 bit UNCOMPRESSED

14bitUC2 258x400 Raw File Compression

Image 2: 14 bit UNCOMPRESSED

14bitLosslessC 258x400 Raw File Compression

Image 3: 14 bit LOSSLESS compression

14bitLossyC 258x400 Raw File Compression

Image 4: 14 bit LOSSY compression

12bitUC 258x400 Raw File Compression

Image 5: 12 bit UNCOMPRESSED

Yes, there are 2 files which are identical, that is 14 bit uncompressed – and there’s a reason for that which will become apparent in a minute.

First, some basic Photoshop ‘stuff’.  If I open TWO images in Photoshop as separate layers in the same document, and change the blend mode of the top layer to DIFFERENCE I can then see the differences between the two ‘images’.  It’s not a perfect way of proving my point because of the phenomenon of photon flux.

Photon Flux Andy??? WTF is that?

Well, here’s where shooting two identical 14 bit uncompressed files comes in – they themselves are NOT identical!:

controlunamplified 258x400 Raw File Compression control 258x400 Raw File Compression

The result of overlaying the two identical uncompressed raw files (above left) – it looks almost black all over indicating that the two shots are indeed pretty much the same in every pixel.  But if I amplify the image with a levels layer (above right) you can see the differences more clearly.

So there you have it – Photon Flux! The difference between two 14 bit UNCOMPRESSED raw files shot at the same time, same ISO, shutter speed AND with a FULLY MANUAL APERTURE.  The only difference between the two shots is the ratio and number of photons striking the subject and being reflected into the lens.

The Levels Adjustment Layer had values of 0, 50 and 150, and is going to be added to the following comparison images:

Firstly 14 Bit UNCOMPRESSED compared to 14 bit LOSSLESS (the important one!):

14bitUCvLosslessC 258x400 Raw File Compression

14 bit UNCOMPRESSED vs 14 bit LOSSLESS

Please remember, the above ‘difference’ image contains photon flux variations too, but if you look carefully you will see greater differences than in the ‘flux only’ image above.

14bitUCvLossyC 258x400 Raw File Compression 14bitUCv12bitUC 258x400 Raw File Compression

The two images above illustrate the differences between 14 bit uncompressed and 14 bit LOSSY compression (left) and 14 bit UNCOMPRESSED and 12 bit UNCOMPRESSED (right) just for good measure!

In Conclusion

As I indicated earlier in the post, this is not a definitive testing method, sequential shots will always contain a photon flux variation that ‘pollutes’ the ‘difference’ image.

I purposefully chose this white subject with textured aluminium fittings and a blackish LED screen because the majority of sensor response will lie in that brightest gamma 1.0 stop.

The exposure was a constant +1EV, 1/30th @ f 18 and 100 ISO – nearly maximum dynamic range for the D800E, and f18 was set manually to avoid any aperture flicker caused by auto stop down.

You can see from all the ‘difference’ images that the part of the subject that seems to suffer the most is the aluminium part, not the white areas.  The aluminium has a stippled texture causing a myriad of small specular highlights – brighter than the white parts of the subject.

What would 14 bit uncompressed minus 14 bit lossless minus photon flux look like?  In a perfect world I’d be able to show you accurately, but we don’t live in one of those so I can’t!

We can try it using the flux shot from earlier:

losslessminuscontrol 258x400 Raw File Compression

But this is wildly inaccurate as the flux component is not pertinent to the photons at the actual time the lossless compression shot was taken.  But the fact that you CAN see an image does HINT that there is a real difference between UNCOMPRESSED and LOSSLESS compression – in certain circumstances at least.

If you have never used a camera that offers the zero raw file compression option then basically what you’ve never had you never miss.  But as a Nikon shooter I shoot uncompressed all the time – 90% of the time I don’t need to, but it just saves me having to remember something when I do need the option.

FW1Q4469 600x400 Raw File Compression

Would this 1DX shot be served any better through UNCOMPRESSED raw recording?  Most likely NO – why?  Low Dynamic Range caused in the main by flat low contrast lighting means no deep dark shadows and nothing approaching a highlight.

I don’t see it as a costly option in terms of buffer capacity or on-board storage, and when it comes to processing I would much rather have a surfeit of sensor data rather than a lack of it – no matter how small that deficit might be.

Lossless raw file compression has NO positive effect on your images, and it’s sole purpose in life is to allow you to fit more shots on the storage media – that’s it pure and simple.  If you have the option to shoot uncompressed then do so, and buy a bigger card!

What pisses my off about Canon is that it would only take, I’m sure, a firmware upgrade to give the 1DX et al the ability to record with zero raw file compression – and, whether needed or not, it would stop miserable grumpy gits like me banging on about it!

 

Prospec USB 3.0 card reader

Prospec USB 3.0 card reader.

A few weeks ago I decided that my Mac Pro4.1 early 2009 needed to be upgraded to USB 3, seeing as I’d not long since fitted it with an SSD for the OS – yes, I found myself in the mood to spend money; obviously I was unwell!

So I bought a 4-port expansion card from Mac Upgrades, installed it in the Mac and connected my 8TB G-drive – and all has worked perfectly ever since.

Being a mainly Nikon user, the XQD reader showed an instant improvement in transfer speed too, but for all my CF cards I was still stuck with my ancient Sandisk USB 2 reader.

I perused a few USB 3 reader prices in was left gasping – obviously I was now feeling a little better!

But then I spied this:

D4D3688 Edit Prospec USB 3.0 card reader

Prospec USB 3.0 Multi-Card Reader

Twenty quid! That’s right, just £20 – bargain!

Real world read-speed testing using Black Magic, and 32 GB Prospec 1010x CF cards yield the following results:

  1. Sandisk USB 2 reader – 36.9 MB/sec
  2. Prospec USB 3.0 reader – 112.7 MB/sec

and just as a comparison, the Sony XQD reader and H-series card averages 139.2 MB/sec.

Previous blog posts have shown you that I’m a fan of Calumet Prospec CF cards; mainly because they are re-badged Delkins, and in my experience simply bomb-proof and good VFM.

I can’t say for sure without checking, but this Prospec USB 3 reader looks VERY much like a re-brand of the Delkin USB 3.0 multi-card reader, but is basically £10 cheaper.

It certainly sucks up uncompressed D800E 14bit RAW files at an impressive rate of knots I can tell you.

In my earlier Prospec CF card post I did allude to the slightly odd fact that the larger the CF card capacity was, the faster its read speed became.  I also bought a 64Gb Prospec 1010x, just to give the D800E more capacity for shooting HQ time-lapse – this card clocks a read-speed average of 119.8 MB/sec – basically 7MB/sec faster than its 32GB cousin.

Yes, there’s cards and readers out there that might yield faster results; but at what cost to your pocket?

But this level of “REAL WORLD” performance is plenty fast enough for yours truly – especially if, like me, you have short arms and long pockets!

You can view the product HERE – BUY one!

 

Monitor Brightness.

Monitor Brightness & Room Lighting Levels.

I had promised myself I was going to do a video review of my latest purchase – the Lee SW150Mk2 system and Big and Little Stopper filters I’ve just spent a Kings ransom on for my Nikon 14-24mm and D800E:

D4D3598 Edit Monitor Brightness.

PURE SEX – and I’ve bloody well paid for this! My new Lee SW150 MkII filter system for the Nikon 14-24. Just look at those flashy red anodised parts – bound to make me a better photographer!

But I think that’ll have to wait while I address a question that keeps cropping up lately.  What’s the question?

Well, that’s the tricky bit because it comes in many guises. But they all boil down to “what monitor brightness or luminance level should I calibrate to?”

Monitor brightness is as critical as monitor colour when it comes to calibration.  If you look at previous articles on this blog you’ll see that I always quote the same calibration values, those being:

White Point: D65 – that figure takes care of colour.

Gamma: 2.2 – that value covers monitor contrast.

Luminance: 120 cdm2 (candelas per square meter) – that takes care of brightness.

Simple in’it….?!

However, when you’ve been around all this photography nonsense as long as I have you can overlook the possibility that people might not see things as being quite so blindingly obvious as you do.

And one of those ‘omissions on my part’ has been to do with monitor brightness settings COMBINED with working lighting levels in ‘the digital darkroom’.  So I suppose I’d better correct that failing on my part now.

What does a Monitor Profile Do for your image processing?

A correctly calibrated monitor and its .icc profile do a really simple but very mission-critical job.

If we open a new document in Photoshop and fill it with flat 255 white we need to see that it’s white.  If we hold an ND filter in front of our eye then the image won’t look white, it’ll look grey.

If we hold a blue filter in front of our eye the image will not look white – it’ll look blue.

That white image doesn’t exist ‘inside the monitor’ – it’s on our computer!  It only gets displayed on the monitor because of the graphics output device in our machine.

So, if you like, we’re on the outside looking in; and we are looking through a window on to our white image.  The colour and brightness level in our white image are correct on the inside of the system – our computer – but the viewing window or monitor might be too bright or too dark, and/or might be exhibiting a colour tint or cast.

Unless our monitor is a totally ‘clean window’ in terms of colour neutrality, then our image colour will not be displayed correctly.

And if the monitor is not running at the correct brightness then the colours and tones in our images will appear to be either too dark or too bright.  Please note the word ‘appear’…

Let’s get a bit fancy and make a greyscale in Photoshop:

Untitled 1 Monitor Brightness.

The dots represent Lab 50 to Lab 95 – the most valuable tonal range between midtone and highlight detail.

Look at the distance between Lab 50 & Lab 95 on the three greyscales above – the biggest ‘span’ is the correctly calibrated monitor.  In both the ‘too bright & contrasty’ and the ‘too dark low contrast’ calibration, that valuable tonal range is compressed.

In reality the colours and tones in, say an unprocessed RAW file on one of our hard drives, are what they are.  But if our monitor isn’t calibrated correctly, what we ‘see’ on our monitor IS NOT REALITY.

Reality is what we need – the colours and tones in our images need to be faithfully reproduced on our monitor.

And so basically a monitor profile ensures that we see our images correctly in terms of colour and brightness; it ensures that we look at our images through a clean window that displays 100% of the luminance being sent to it – not 95% and not 120% – and that all our primary colours are being displayed with 100% fidelity.

In a nutshell, on an uncalibrated monitor, an image might look like crap, when in reality it isn’t.  The shit really starts to fly when you start making adjustments in an uncalibrated workspace – what you see becomes even further removed from reality.

“My prints come out too dark Andy – why?”

Because your monitor is too bright – CALIBRATE it!

“My pics look great on my screen, but everyone on Nature Photographers Network keeps telling me they’ve got too much contrast and they need a levels adjustment.  One guy even reprocessed one – everyone thought his version was better, but frankly it looked like crap to me – why is this happening Andy?

“Because your monitor brightness is too low but your gamma is too high – CALIBRATE it!  If you want your images to look like mine then you’ve got to do ALL the things I do, not just some of ’em – do you think I do all this shit for fun??????????……………grrrrrrr….

But there’s a potential problem;  just because your monitor is calibrated to perfection, that does NOT mean that everything will be golden from this point on

Monitor Viewing Conditions

So we’re outside taking a picture on a bright sunny day, but we can’t see the image on the back of the camera because there’s too much daylight, and we have to dive under a coat with our camera to see what’s going on.

But if we review that same image on the camera in the dark then it looks epic.

Now you have all experienced that…….

The monitor on the back of your camera has a set brightness level – if we view the screen in a high level of ambient light the image looks pale, washed out and in a general state of ultra low contrast.  Turn the ambient light down and the image on the camera screen becomes more vivid and the contrast increases.

But the image hasn’t changed, and neither has the camera monitor.

What HAS changed is your PERCEPTION of the colour and luminance values contained within the image itself.

Now come on kids – join the dots will you!

It does not matter how well your monitor is calibrated, if your monitor viewing conditions are not within specification.

Just like with your camera monitor, if there is too much ambient light in your working environment then your precisely calibrated monitor brightness and gamma will fail to give you a correct visualization or ‘perception’ of your image.

And the problems don’t end there either; coloured walls and ceilings reflect that colour onto the surface of your monitor, as does that stupid luminous green shirt you’re wearing – yes, I can see you!  And if you are processing on an iMac then THAT problem just got 10 times worse because of the glossy screen!

Nope – bead-blasting your 27 inches of Apple goodness is not the answer!

Right, now comes the serious stuff, so READ, INGEST and ACT.

ISO Standard 3664:2009 is the puppy we need to work to (sort of) – you can actually go and purchase this publication HERE should you feel inclined to dump 138 CHF on 34 pages of light bedtime reading.

There are actually two ISO standards that are relevant to us as image makers; ISO 12646:2015(draft) being the other.

12646 pertains to digital image processing where screens are to be compared to prints side by side (that does not necessarily refer to ‘desktop printer prints from your Epson 3000’).

3664:2009 applies to digital image processing where screen output is INDEPENDENT of print output.

We work to this standard (for the most part) because we want to process for the web as well as for print.

If we employ a print work flow involving modern soft-proofing and otherwise keep within the bounds of 3664 then we’re pretty much on the dance-floor.

ISO 3664 sets out one or two interesting and highly critical working parameters:

Ambient Light White Point: D50 – that means that the colour temperature of the light in your editing/working environment should be 5000Kelvin (not your monitor) – and in particular this means the light FALLING ON TO YOUR MONITOR from within your room. So room décor has to be colour neutral as well as the light source.

Ambient Light Value in your Editing Area: 32 to 64 Lux or lower.  Now this is what shocks so many of you guys – lower than 32 lux is basically processing in the dark!

Ambient Light Glare Permissible: 0 – this means NO REFLECTIONS on your monitor and NO light from windows or other light sources falling directly on the monitor.

Monitor White Point – D65 (under 3664) and D50 (under 12646) – we go with D65.

Monitor Luminance – 75 to 100 cdm2 (under 3664) and 80 to 120 cdm2 (under 12646 – here we begin to deviate from 3664.

We appear to be dealing with mixed reference units, but 1 Lux = 1 cdm2 or 1 candela per square metre.

The way Monitor Brightness or Luminance relates to ambient light levels is perhaps a little counter-intuitive for some folk.  Basically the LOWER your editing area Lux value the LOWER your Monitor Brightness or luminance needs to be.

Now comes the point in the story where common sense gets mixed with experience, and the outcome can be proved by looking at displayed images and prints; aesthetics as opposed numbers.

Like all serious photographers I process my own images on a wide-gamut monitor, and I print on a wide-gamut printer.

Wide gamut monitors display pretty much 90% to100% of the AdobeRGB1998 colour space.

What we might refer to as Standard Gamut monitors display something a little larger than the sRGB colour space, which as we know is considerably smaller than AdobeRGB1998.

StandardGamutvsWideGamut Monitor Brightness.

Left is a standard gamut/sRGB monitor and right is a typical wide gamut/AdobeRGB1998 monitor – if you can call any NEC ‘typical’!

Find all the gory details about monitors on this great resource site – TFT Central.

At workshops I process on a 27 inch non-Retina iMac – this is to all intents and purposes a ‘standard gamut’ monitor.

I calibrate my monitors with a ColorMunki Photo – which is a spectrophotometer.  Spectro’s have a tendency to be slow, and slightly problematic in the very darkest tones and exhibit something of a low contrast reaction to ‘blacks’ below around Lab 6.3 (RGB 20,20,20).

If you own a ColorMunki Display or i1Dispaly you do NOT own a spectro, you own a colorimeter!  A very different beast in the way it works, but from a colour point of view they give the same results as a spectro of the same standard – plus, for the most part, they work faster.

However, from a monitor brightness standpoint, they differ from spectros in their slightly better response to those ultra-dark tones.

So from a spectrophotometer standpoint I prefer to calibrate to ISO 12646 standard of 120cdm2 and control my room lighting to around 35-40 Lux.

Just so that you understand just how ‘nit-picking’ these standards are, the difference between 80cdm2 and 120 cdm2 is just 1/2 or 1/3rd of a stop Ev in camera exposure terms, depending on which way you look at it!

However, to put this monitor brightness standard into context, my 27 inch iMac came from Apple running at 290 cdm2 – and cranked up fully it’ll thump out 340 cdm2.

Most stand-alone monitors you buy, especially those that fall under the ‘standard gamut’ banner, will all be running at massively high monitor brightness levels and will require some severe turning down in the calibration process.

You will find that most monitor tests and reviews are done with calibration to the same figures that I have quoted – D65, 120cdm2 and Gamma 2.2 – in fact this non-standard set up has become so damn common it is now ‘standard’ – despite what the ISO chaps may think.

Using these values, printing out of Lightroom for example, becomes a breeze when using printer profiles created to the ICC v2 standard as long as you ‘soft proof’ the image in a fit and proper manner – that means CAREFULLY, take your time.  The one slight shortcoming of the set up is that side by side print/monitor comparisons may look ever so slightly out of kilter because of the D65 monitor white point – 6,500K transmitted white point as opposed to a 5,000K reflective white point.  But a shielded print-viewer should bring all that back into balance if such a thing floats your boat.

But the BIG THING you need to take away from the rather long article is the LOW LUX VALUE of you editing/working area ambient illumination.

Both the ColorMunki Photo and i1Pro2 spectrophotometers will measure your ambient light, as will the ColorMunki Display and i1 Display colorimeters, to name but a few.

But if you measure your ambient light and find the device gives you a reading of more than 50-60 lux then DO NOT ask the device to profile for your ambient light; in fact I would not recommend doing this AT ALL, here’s why.

I have a main office light that is colour corrected to 5000K and it chucks out 127 Lux at the monitor.  If I select the ‘measure and calibrate to ambient’ option on the ColorMunki Photo it eventually tells me I need a monitor brightness or luminance of 80 cdm2 – the only problem is that it gives me the same figure if I drop the ambient lux value to 100.

Now that smells a tad fishy to me……..

So my advice to anyone is to remove the variables, calibrate to 120 cdm2 and work in a very subdued ambient condition of 35 to 40 Lux. I find it easier to control my low lux working ambient light levels than bugger about with over-complex calibration.

To put a final perspective on this figure there is an interesting page on the Apollo Energytech website which quotes lux levels that comply with the law for different work environments – don’t go to B&Q or Walmart to do a spot of processing, and we’re all going to end up doing hard time at Her Madges Pleasure –  law breakers that we are!

Please consider supporting this blog.

This blog really does need your support. All the information I put on these pages I do freely, but it does involve costs in both time and money.

If you find this post useful and informative please could you help by making a small donation – it would really help me out a lot – whatever you can afford would be gratefully received.

Your donation will help offset the costs of running this blog and so help me to bring you lots more useful and informative content.

Many thanks in advance.

 

Photoshop Save for Web

Save for Web in Photoshop CC 2015 – where the Chuff has it gone?

“Who’s moved my freakin’ cheese?”

Adobe have moved it……..

For years Photoshop has always offered the same ‘Save for Web’ or ‘Save for Web & Devices’ option and dialogue box:

SFW1 900x563 Photoshop Save for Web

The traditional route to the ‘Save for Web’ dialogue in all versions of Photoshop prior to CC 2015.

But Adobe have embarked on a cheese-moving exercise with CC 2015 and moved ‘save for web’ out of the traditional navigation pathway:

SFW2 900x563 Photoshop Save for Web

Adobe have ‘moved your cheese’ to here, though the dialogue and options are the same.

If we take a closer look at that new pathway:

SFW3 Photoshop Save for Web

…we see that wonderful Adobe term ‘Legacy’ – which secretly means crap, shite, old fashioned, out dated, sub standard and scheduled for abandonment and/or termination.

‘THEY’ don’t want you to use it!

I have no idea why they have done this, though there are plenty of excuses being posted by Adobe on the net.  But what is interesting is this page HERE and more to the point this small ‘after thought’:

SFW4 Photoshop Save for Web

That sounds really clever – especially the bit about ‘may be’……. let’s chuck colour management out the freakin’ window and be done!

So if we don’t use the ‘legacy’ option of save for web, let’s see what happens.  Here’s our image, in the ProPhotoRGB colour space open in Photoshop CC 2015:

SFW5 900x563 Photoshop Save for Web

So let’s try the Export>Quick Export as JPG option and bring the result back into Photoshop:

SFW6 900x563 Photoshop Save for Web

Straight away we can see that the jpg is NOT tagged with a colour space, but it looks fine inside the Photoshop CC 2105 work space:

SFW7 900x563 Photoshop Save for Web

“Perfect” – yay!…………NOT!

Let’s open in with an internet browser……

SFW8 900x563 Photoshop Save for Web

Whoopsy – doopsy…!  Looks like a severe colour management problem is happening somewhere……..but Adobe did tell us:

SFW4 Photoshop Save for Web

Might the Export Preferences help us:

SFW9 900x563 Photoshop Save for Web

In a word……..NO

Let’s try Export>Export As:

SFW10 900x563 Photoshop Save for Web

Oh Hell No!

If we open the original image in Photoshop CC 2015 in the ProPhotoRGB colour space and then go Edit>Convert to Profile and select sRGB; then select Export>Quick Export as JPG, the resulting image will look fine in a browser.  But it will still be ‘untagged’ with any colour space – which is never a good idea.

And if you’ve captioned and key worded the image then all that hard work is lost too.

So if you must make your web jpeg images via Photoshop you will only achieve a quick and accurate work flow by using the Save for Web (Legacy) option.  That way you’ll have a correctly ‘tagged’ and converted image complete with all your IPTC key words, caption and title.

Of course you could adopt the same work flow as me, and always export as jpeg out of Lightroom; thus avoiding this mess entirely.

I seriously don’t know what the devil Adobe are thinking of here, and doubtless there is or will be a work around for the problem, but whatever it is it’ll be more work for the photographer.

Adobe – if it ain’t broke then don’t fix it !!

 

Please consider supporting this blog.

This blog really does need your support. All the information I put on these pages I do freely, but it does involve costs in both time and money.

If you find this post useful and informative please could you help by making a small donation – it would really help me out a lot – whatever you can afford would be gratefully received.

Donations would help offset the costs of running this blog and so help me to bring you lots more useful and informative content.

Many thanks in advance.

 

Prospec 32Gb UDMA 7 CF

 The Prospec 32Gb UDMA 7 Compact Flash Card from Calumet – review

Prospec Prospec 32Gb UDMA 7 CF

The Prospec 32Gb UDMA 7 Compact Flash Card from Calumet – click image to visit the product order page.

Because I’m something of a photographic ‘old fart’ and have been taking images for a living since before the venerable A1 was a glimmer in some Canon engineers eye, I treat everything new with suspicion!

Back in those days when we shot on film, suspicious gits like me had our favourite films we used.  These were whittled down from the vast array on offer, not only on the basis of their performance, but also on reliability.

Did the sprocket holes tear in a particular cameraif they did then to avoid imminent disaster you’d never put that film in that camera.

Were the ‘tails’ always taped to the cassette spool? Christ, that one nearly cost me a boat-load of money at a wedding once – both bride and groom were barristers!

Thank the Lord we don’t have problems like that any more.

But CF cards come with their equivalent problem – card failure.

CF cards are basically Flash RAM, just like SSDs in the latest computers.  And as such they are prone to some degree of instant failure over time.

 The Way I Use Camera Storage Media

When I’ve finished shooting something I move it from the camera storage to my main imaging machine as soon as possible.  Once the shots are on the computer, the card goes back in the camera and is immediately reformatted.

Back when the D3 was Nikon’s flagship I’d had some clonking failures of Lexar CF cards and Sandisk Ultras, when Kevin Treadwell at TFC Birmingham put me on to Delkin cards – and I have never had a problem with them………(see footnote)…

And the two original 16Gb Delkins I bought for the D3 are still going strong to this day!

So when I eventually moved to the D4 I wanted a 32Gb Delkin UDMA 7 to go with the 32Gb Sony XQD, but I couldn’t locate one anywhere.

I was moaning about this to Stuart Tudor-Wood at Calumet Birmingham and he suggested I tried their own Prospec 32Gb UDMA 7 instead.

Can you imagine what the “suspicious old photography fart” in me was saying; I was used to possibly the most reliable memory on the planet, and the priciest; and here was something I’d never heard of, and costing pretty much the same..

I did manage to walk out of the door without paying for it, so that was a small victory – but it only lasted 3 weeks until I was doing another workshop there – he nailed me for it the minute I walked through the door!

So, here we are, two years later.  The other day I realised how long I’d had this card in regular use.  It’s a mighty rare occurrence for me to have a day shooting long lens action and not generate some use of the CF card.

Even if I’ve only shot to the XQD card, force of habit leads me to format both cards one after the other.

And if I’m going to shoot video I shoot that to the XQD and then remove it if I want to shoot stills, which consequently go to the CF card.

When I’m testing lenses and shooting for workshop slides etc I shoot to the CF card, then stick that in my steam-powered laptop – it can never see my XQD reader and I daren’t even think about asking it to accommodate tethered shooting..

I bought the card a new brother so I had two of them in the 1DX when I went to Norway in February this year.

All in all, looking back through all the image batches I’ve shot I reckoned that this one card had been reformatted 981 times in a selection of camera bodies from a 1DX and 5DMk3 to a D4S, D4, D800, D800E and D810.

In the D4 this card allows me to shoot 41 14bit uncompressed raw files before I hit the end of the camera buffer; which let’s face it, is plenty.

So I promptly set about shooting 20 bursts of 41 frames, wiping the card between bursts, just so that I could say with some degree of certainty that the card had just hit its 1000th reformat.

Now THAT is a good, solid and highly reliable card that has put up with more abuse in the last two years than some of my clients would give their CF cards in a lifetime.

What Do The ‘Hieroglyphics’ All Mean?

I must admit to being somewhat ambivalent to the majority of these speed numbers – at the end of the day, as a photographer you are more interested in sustained write speed than you are in read speed – or at least you should be.

The faster the write speed of the media the longer it takes to hit the end of the camera internal buffer – this means you shoot more sequential frames in a burst.

CF6 Prospec 32Gb UDMA 7 CF

This logo means the media is compliant with the CFA’s CF6 specification, which is supposed to provide data transfer rates of 167Mb/sec.

But that quoted transfer rate could be either read or write – they never seem to commit!

CF6 specification means UDMA 7 compliance; whereas UDMA 6 equated to CF 5 specification and transfer speeds of 133Mb/sec.

CF cards have to communicate with a host device – in our case our camera; and UMDA is the most efficient and fastest mode of communication. But not ALL cameras are UDMA compliant.  And those that are might not be UDMA 7 compliant.

If a camera is not UDMA compatible then believe it or not, a slower non-UDMA card might make the camera work faster. If you put a UDMA 7 card in a camera that is only UDMA 6 compliant then that’s fine, but communication between the two will be at UDMA 6 speeds.

The moral here is to check your camera specifications, and available firmware upgrades.

What does 1010x mean? Known as the card Commercial X Rating it’s an indication of read speed more than anything else, and basically relates the speed of the card as a multiple of the old CD-ROM standard of 150KBs.  So 1010x equates to 151.15Mbs.

But here’s the thing; none of these speeds, theoretical or otherwise, are derived via a camera – they are all acquired on a test-bench computer and a variety of card interfaces.

There is a simple if slightly ‘rough ‘n ready’ test that you can do to check the camera/media combo write speed:

  1. Set the camera to its fastest RAW shooting frame rate (Canon 1DX users note, that’s NOT 14fps!).
  2. Set the burst length to 30 frames.
  3. Put the camera in manual mode, auto iso, and set the shortest shutter speed.

Get a stop-watch and be prepared to start it when the ‘data write’ indicator lights up.

Press and hold the shutter button to start the burst of exposures, take your finger off the shutter button when the camera stops shooting.  The indicator light will still be on, and the stop watch should still be running.  Stop the clock when the light goes out!

Multiply the number of frames by the size of your RAW file, then divide the result by the time in seconds and you’ll have a rough value for your data write speed in Mb/sec.

In a Canon 1DX the Prospec 32Gb UDMA 7 CF card chugs away at a highly respectable 69Mbs write speed.

32Gb of storage with great reliability and ‘real world’ write speed like that is great – especially for the price.

Nikon Users

If, like me, you mainly shoot uncompressed 14 bit RAW (not an option for Canon shooters) the write speed of the Prospec 32Gb UDMA 7 CF card in a D4/4S will drop to around 41Mbs due to the much increased file size of each RAW frame – 35.9Mb average RAW size, as opposed to the 1DX average file size of around 26.4Mb.

But sensible burst shooting in conjunction with the huge Nikon D4/4S buffer means you will never suffer from ‘buffer lock-out’.

Conclusion

Bearing in mind that this is just my opinion, the Prospec 32Gb UDMA 7 CF card represents exceptionally good value for money.  Yes, there are faster cards out there; but I’ve been bitten by both S****** and L**** in the past, and ‘once bitten twice shy’ and all that……

For me the write/format longevity of this card is what strikes me the most, and for the price this card is well worthy of anyone’s consideration.

D4D2589 900x599 Prospec 32Gb UDMA 7 CF

Two years and over 1000 reformats, the Prospec 32Gb UDMA 7 CF card is still going strong – have a Kite!

Footnote

I’ve just had it confirmed……..the Prospec is actually Delkin; so bearing in mind what I said earlier, the reliability comes as no surprise!

Please consider supporting this blog.

This blog really does need your support. All the information I put on these pages I do freely, but it does involve costs in both time and money.

If you find this post useful and informative please could you help by making a small donation – it would really help me out a lot – whatever you can afford would be gratefully received.

Donations would help offset the costs of running this blog and so help me to bring you lots more useful and informative content.

Many thanks in advance.

 

Brilliant Supreme Lustre Ultimate Paper

Brilliant Supreme Lustre Paper Review

(26/07/2015: Important update added at end of post re: Canon Pixma Pro 1 .icc profile from the Brilliant website).

Printing an image is the final part of the creative process, and I don’t think there are many of my peers who would disagree with me on that score.

Whenever I’m teaching printing, be it a 1to1 session or a workshop group, I invariably get asked what my recommendation for a good general purpose printing paper would be – one that would suit the widest spread of image styles and subjects.

Until quite recently that recommendation was always the same – Permajet Oyster.

It’s a wide gamut paper – it reproduces a lot of colour and hue variation – that has a high level of brightness and is really easy to soft-proof to in Lightroom. And even though it’s not absolutely colour neutral, it’s natural base tint isn’t too cool to destroy the atmosphere in a hazy orange sunset seascape.

But, after months of printing and testing I have now changed my mind – and for good reason.

BSLU Brilliant Supreme Lustre Ultimate Paper

Brilliant Supreme Lustre Ultimate paper from Calumet is my new recommendation for general printing, and for anyone who wants printing with the minimum of fuss and without the hassle of trying to decide what paper to choose.

Let’s look at how the two papers stack up:

Paper Weight:

Permajet Oyster 271gsm

Brilliant Supreme Lustre Ultimate 300gsm

A heavier paper is a good thing in my book; heavier means thicker, and that means a bit more structural stability; a boon when it comes to matting and mounting, and general paper handling.

Paper Tint & Base Neutrality:

Permajet Oyster:     RGB 241,246,243

Brilliant Supreme Lustre Ultimate:     RGB 241,245,245

The above RGB values are measured using a ColorMunki Photo in spot colour picker mode, as are the L,a,b values below.

L,a,b Luminosity Value:

Permajet Oyster:     96.1

Brilliant Supreme Lustre Ultimate:     95.8

So both papers have the same red value in their ‘paper white’, but both have elevated green and blue values, and yes, green + blue = cyan!

But the green/blue ratios are different – they are skewed in the Permajet Oyster, but 1:1 in the Brilliant paper – so where does this leave us in terms of paper proofing?

The image below is a fully processed TIFF open in Lightroom and ready for soft-proofing:

BSLU2 600x375 Brilliant Supreme Lustre Ultimate Paper

Now if we load the image into the Permajet Oyster colour space – that’s all soft proofing is by the way – we can see a number of changes, all to the detriment of the image:

BSLU3 600x375 Brilliant Supreme Lustre Ultimate Paper

The image has lost luminance, the image has become slightly cooler overall but, there is a big colour ‘skew’ in the brown, reds and oranges of both the eagle and the muted background colours.

Now look at what happens when we send the image into the Brilliant Supreme Lustre Ultimate colour space:

BSLU4 600x375 Brilliant Supreme Lustre Ultimate Paper

Yes the image has lost luminance, and there is an overall colour temperature change; but the important thing is that it’s nowhere near as skewed as it was in the Permajet Oyster soft-proofing environment.

The more uniform the the colour change the easier it is to remove!

BSLU5 600x375 Brilliant Supreme Lustre Ultimate Paper

The only adjustments I’ve needed to make to put me in the middle of the right ball park are a +6 Temp and +2 Clarity – and we are pretty much there, ready to press the big “print me now” button.

The image below just serves to show the difference between the proof adjusted and unadjusted image:

BSLU6 600x375 Brilliant Supreme Lustre Ultimate Paper

But here is the same image soft-proofed to pretty much the same level, but for Permajet Oyster paper – click the image to see it at full size, just look at the number of adjustments I’ve had to do to get basically the same effect:

BSLU7 600x375 Brilliant Supreme Lustre Ultimate Paper

Couple of things – firstly, apologies for the somewhat violent image – the wife just pointed that out to me!  Secondly though, after testing various images of vastly differing colour distributions and gamuts, I consistently find I’m having to do less work in soft-proofing with the Brilliant Supreme Lustre Ultimate paper than its rival.  Though I must stress that the adjustments don’t always follow the same direction for obvious reasons..

Media Settings:

These are important.  For most printers the Oyster paper has a media setting recommendation on Epson printers ( someone once told me there were other makes that used bubbles – ewee, yuck) of Premium Gloss Photo Paper or PGPP.  But I find that PSPP (Premium Semi Gloss Photo Paper) works best on my 4800,  and I know that it’s the recommended media setting for the Epson SCP600.

See update below for Canon Pixma Pro 1 media settings and new updated .icc profile

Conclusion:

Buy a 25 sheet box A3 HERE or 50 sheet box A4 size HERE

They say time is money, so anything that saves time is a no-brainer, especially if it costs no more than its somewhat more labour-intensive alternative.

Gamut1 900x840 Brilliant Supreme Lustre Ultimate Paper

The gamut or colour spaces of the two paper ‘canned profiles’ is shown above – red plot is the Brilliant Supreme Lustre Ultimate and white is Oyster – both profiles being for the Epson 4800.  Yes, the Calumet paper gamut is slightly smaller, but in real terms and with real-world images and the relative colour-metric rendering intent I’ve not noticed any short-comings whatsoever.

I have little doubt that the gamut of the paper would be expanded further with the application of a custom profile, but that’s a whole other story.

Running at around £1 per sheet of A3 it’s no more expensive than any other top quality general printing paper, and it impresses the heck out of me with relatively neutral base tint.

So easy to print to – so buy some!

I’ll be demonstrating just how well this paper works at a series of Print Workshops for Calumet later in the year, where we’ll be using the Epson SC-P600 printer, which is the replacement for the venerable R3000.

UPDATE:

Canon Pixma Pro One .ICC Profile

If anyone has tried using the Lustre profile BriLustreCanPro1.icc that was available for download on the Brilliant website, then please STOP trying to use it – it’s an abomination and whoever produced it should be shot.

I discovered just how bad it was when I was doing a print 1to1 day and the client had a PixmaPro1 printer.  I spoke to Andy Johnson at Calumet and within a couple of days a new profile was sorted out and it works great.

Now that same new profile is available for download at the Brilliant website HERE – just click and download the zip file.  In the file you will find the new .icc profile which goes by the name of BriLustreCanonPro1_PPPL_1.icc

I got them to add the media settings acronym in the profile name – a la Permajet – so set the paper type to Photo Paper Pro Lustre when using this paper on the Pixma Pro 1.

Please consider supporting this blog.

This blog really does need your support. All the information I put on these pages I do freely, but it does involve costs in both time and money.

If you find this post useful and informative please could you help by making a small donation – it would really help me out a lot – whatever you can afford would be gratefully received.

Donations would help offset the costs of running this blog and so help me to bring you lots more useful and informative content.

Many thanks in advance.

 

Image Retouching

 Image Retouching in Photoshop CC 2014

It’s very rare that we ever get a frame from our camera that doesn’t need retouching – that’s a FACT.

Imperfections in the frame can be both ‘behind the shutter’ and ‘in front of the lens’ – sensor dust and crud on the subject.  But you’ll take photographs where these imperfections are hard, if not impossible, to see under normal viewing.

But print that image BIG and those invisible faults will begin to be visually apparent; by which time it’s too bloomin’ late and they’ve cost you money; or worse still, a client.

The ‘visualise spots’ tool in Lightroom will show you a certain amount of ‘dust bunny’ type faults and errors, but the way Lightroom executes retouching repairs is not always ‘quite up to snuff’; and when it comes to dust, crap and other undesirables on the subject itself Lightroom will fail to recognise them in the first place.

Image retouching isn’t really all that difficult; but it can be an intensely tedious and time-consuming process.

To that end I’ve stuck these HD video lessons on my You Tube channel.

In these videos I illustrate how I deploy the Spot Healing brush, Healing Brush, Clone Tool, Patch Tool and Content Aware Fill command to carry out some basic image retouching on a shot of cutlery bright ware.

I demonstrate the addition of a ‘dust visibility’ curves adjustment layer – something that everyone should ‘get the hang’ of using – as a first step to effective image retouching.

When photographing glossy, high reflectivity subjects we need to remove the imperfections and smooth the surfaces of the subject without reducing the ‘glossiness’ and turning it matt!

Please note: a couple of these videos are in excess of 20 minutes duration and they will look better at full resolution HDV if you click the You Tube icon. Also, it takes a lot longer to do a job when you have to talk about at the same time!

I hope you get some idea as to how simple and straightforward my approach to image retouching is!

Please consider supporting this blog.

This blog really does need your support. All the information I put on these pages I do freely, but it does involve costs in both time and money.

If you find this post useful and informative please could you help by making a small donation – it would really help me out a lot – whatever you can afford would be gratefully received.

Donations would help offset the costs of running this blog and so help me to bring you lots more useful and informative content.

Many thanks in advance.

 

HDR in Lightroom CC (2015)

Lightroom CC (2015) – exciting stuff!

New direct HDR MERGE for bracketed exposure sequences inside the Develop Module of Lightroom CC 2015 – nice one Adobe!  I can see Eric Chan’s finger-prints all over this one…!

D4D4469 HDR 600x400 HDR in Lightroom CC (2015)

Twilight at Porth Y Post, Anglesey.

After a less than exciting 90 minutes on the phone with Adobe this vary morning – that’s about 10 minutes of actual conversation and an eternity of crappy ‘Muzak’ – I’ve managed to switch from my expensive old single app PsCC subscription to the Photography Plan – yay!

They wouldn’t let me upgrade my old stand-alone Lr4/Lr5 to Lr6 ‘on the cheap’ so now they’ve given me two apps for half the price I was paying for 1 – mental people, but I’ll not be arguing!

I was really eager to try out the new internal ‘Merge’ script/command for HDR sequences – and boy am I impressed.

I picked a twilight seascape scene I shot last year:

5 600x375 HDR in Lightroom CC (2015)

Click to view LARGER IMAGE.

I’ve taken a 6 shot exposure bracketed sequence of RAW files above, into the Develop Module of Lightroom CC and done 3 simple adjustments to all 6 under Auto Synch:

  1. Change camera profile from Adobe Standard to Camera Neutral.
  2. ‘Tick’ Remove Chromatic Aberration in the Lens Corrections panel.
  3. Change the colour temperature from ‘as shot’ to a whopping 13,400K – this neutralises the huge ‘twilight’ blue cast.

You have to remember that NOT ALL adjustments you can make in the Develop Module will carry over in this process, but these 3 will.

4 600x282 HDR in Lightroom CC (2015)

Click to view LARGER IMAGE.

Ever since Lr4 came out we have had the ability to take a bracketed sequence in Lightroom and send them to Photoshop to produce what’s called a ’32 bit floating point TIFF’ file – HDR without any of the stupid ‘grunge effects’ so commonly associated with the more normal styles of HDR workflow.

The resulting TIFF file would then be brought back into Lightroom where some very fancy processing limits were given to us – namely the exposure latitude above all else.

‘Normal’ range images, be they RAW or TIFF etc, have a potential 10 stops of exposure adjustment, +5 to -5 stops, both in the Basics Panel, and with Linear and Radial graduated filters.

But 32 bit float TIFFs had a massive 20 stops of adjustment, +10 to -10 stops – making for some very fancy and highly flexible processing.

Now the, what’s a ‘better’ file type than pixel-based TIFF?  A RAW file……

1 600x375 HDR in Lightroom CC (2015)

Click to view LARGER IMAGE.

So, after selecting the six RAW images, right-clicking and selecting ‘Photomerge>HDR’…

2 600x375 HDR in Lightroom CC (2015)

Click to view LARGER IMAGE.

…and selecting ‘NONE’ from the ‘de-ghost’ options, I was amazed to find the resulting ‘merged file’ was a DNG – not a TIFF – yet it still carries the 20 stop exposure adjustment  latitude.

6 600x375 HDR in Lightroom CC (2015)

Click to view LARGER IMAGE.

This is the best news for ages, and grunge-free, ‘real-looking’ HDR workflow time has just been axed by at least 50%.  I can’t really say any more about it really, except that, IMHO of course, this is the best thing to happen for Adobe RAW workflow since the advent of PV2012 itself – BRILLIANT!

Note: Because all the shots in this sequence featured ‘blurred water’, applying any de-ghosting would be detrimental to the image, causing some some weird artefacts where water met static rocks etc.

But if you have image sequences that have moving objects in them you can select from 3 de-ghost pre-sets to try and combat the artefacts caused by them, and you can check the de-ghost overlay tick-box to pre-visualise the de-ghosting areas in the final image.

3 600x375 HDR in Lightroom CC (2015)

Click to view LARGER IMAGE.

Switch up to Lightroom CC 2015 – it’s worth it for this facility alone.

D4D4469 HDR 2 600x400 HDR in Lightroom CC (2015)

Click to view LARGER IMAGE.

 

Please consider supporting this blog.

This blog really does need your support. All the information I put on these pages I do freely, but it does involve costs in both time and money.

If you find this post useful and informative please could you help by making a small donation – it would really help me out a lot – whatever you can afford would be gratefully received.

Donations would help offset the costs of running this blog and so help me to bring you lots more useful and informative content.

Many thanks in advance.