Parallel Horizontals.

Quite often when shooting landscapes, or more commonly seascapes, you may run into a problem with parallel horizontals and distortion between far and near horizontal features such as in the image below.

11 900x674 Parallel Horizontals.

Parallel horizontals that are not parallel – but should be!

This sort of error cannot be fully corrected in Lightroom alone; we have to send the image to Photoshop in order to make the corrections in the most efficient manner.

Here’s a video lesson on how to effectively do just that, using the simplest, easiest and quickest of methods:

You can watch the video at full size HERE – make sure you click the HD icon.

This is something which commonly happens when photographing water with a regular shaped man-made structure in the foreground and a foreshortened horizon line such as the receding opposite shore in this shot.  But with a little logical thought these problems with parallel horizontals being “out of kilter” can be easily cured.

UPDATE: Someone said to me the other day that we could do the same using the WARP tool in Photoshop – what a bloody Pillock!  It would take at least 4 times as long, and we’d be stretching, compressing and inventing pixels all over the place!  Why the F*** folk can’t put their brains in bloody gear before flapping their chops ?? 

But then again, who the heck am I to stop prats and numpties from making work for themselves………..


Please consider supporting this blog.

This blog really does need your support. All the information I put on these pages I do freely, but it does involve costs in both time and money.

If you find this post useful and informative please could you help by making a small donation – it would really help me out a lot – whatever you can afford would be gratefully received.

Your donation will help offset the costs of running this blog and so help me to bring you lots more useful and informative content.

Many thanks in advance.


Black Ink Type

Black ink type and black ink switching when moving from matte to luster and gloss papers – here’s my thoughts on this, initially triggered by Franks’ reply to my previous article HERE.

And I quote:

Another great and instructive article Andy. I have the r3000 but get slightly annoyed with the black ink changes from one to the other. Some further guidance on the use of these re paper ‘types’ would be appreciated by moi ~ please ♡

Look, he’s even put a heart in there – bless you Frank, that’s more than I’ve got out of ‘her indoors’ for years!

Now the basic school of thought over this switching of black ink type is this:

  • PK, or Photo Black ink type supposedly produces a smooth, highly glossy black.
  • MK or Matte Black ink type produces a dull, flat black.
  • Using a matte finish paper requires the MATTE black ink type.
  • Using Luster or Gloss paper requires the Photo black ink type.

The PK black ink type really only produces a HIGH GLOSS finish when chucked onto HIGH GLOSS media.  Its’ got a rather less glossy and more ‘egg shell’ finish when used on a more luster finish paper. There does come a “tipping point” though where it will look a little shinier than the finish of the paper – and it’s this tipping point where theory, clever-dicks and user-guides tell you there’s a need to switch to the matte black ink type.

The Matte black ink type does exactly what point two says it does.

The third point – replace the word “requires” with the phrase “can cope with” and we’d be about right.

The forth point is absolutely true; get this wrong by printing with the MK black ink type on high gloss paper and you’ll just waste consumables and potentially end up with the type of clean up operation normally the preserve of Exon & BP. Dot gain on steroids!

There’s also an argument that the MK black ink type produces a deeper black on matte finish paper than the PK black ink type – this is also true:

4800 PermMus MKvsPK 900x692 Black Ink Type

Permajet canned profiles for Museum paper on the Epson 4800 printer using PK and MK black ink types.

As we can clearly see, the Matte black ink type does indeed accommodate a deeper black point than its counterpart Photo black ink type.

Adopting the Common Sense Approach

There are a few things we need to think about here, and the first one is my constant mantra that the choice of paper is governed by the “overall look, feel and atmosphere of the finished image” when it’s sitting there on your monitor.

Paper choice IS the final part of the creative process; for all the reasons I’ve mentioned in past blog posts.

You will also know by now that in my world there is little room for high gloss paper – it’s a total pain the bum because of its highly reflective surface; but that same surface can allow you to print the very finest of details.

But here’s common sense point number 1 – the majority of people reading this blog, attending my workshops and coming to me for 1to1 tuition CAN NOT produce images with detail fine enough to warrant this single benefit of high gloss paper.

That’s not because they’re daft or rubbish at processing either – it’s simply due to the fact that they shoot 35mm format dSLR, not £30K medium format.  The sensors we commonly use can’t record enough ultra fine detail.  There’s a really good comparison between the Nikon D800 and an IQ160 here, it’s well worth having a look – then you’ll see what I’m on about.

The point I’m trying to make is this; print on gloss from 35mm if you like; but you are saddling yourself with its problems but not truthfully getting any of the benefit – but you can kid yourself if you like!

I Lust After Luster Papers But How Lusty Is That Luster?

As I mentioned in the previous post, Calumet Brilliant Museum Satin Matte Natural is NOT a matte finish paper.

True matte papers never really hold much appeal for me if I’m honest, because they are very dull, flat and relatively lifeless.  Yes, a 12×12 inch monochromatic image might look stunning, especially hanging in an area where reflections might prove difficult for any other print surface.

But that same image printed 8 foot square might well “kill’ any room you hang it in, just because it’s so dull and so damned BIG.

True matte papers do have their uses that’s for sure, but in the main you need to discriminate between matte and what I call matte “effect”.

Permajet Fine Art Museum 310, Matte Plus and Portrait 300 are papers that spring to mind as falling into this matte effect category – and wouldn’t you know it, there are canned profiles for these papers for both PK and MK black ink type ink sets, as you can see from the image earlier in the post.

So, with regard to black ink type switching you have to ask yourself:

  • Am I using a paper the ACTUALLY NEEDS the MK black ink type?  Chances are you’re probably not!
  • If I am, do I really want to – how big a print am I doing?

In my own print portfolio I only have two images that benefit from being printed on a “dead” media surface, and they are both printed to Permajet Museum using the PK black ink type.

I had another one that looked “nearly there” but the heavy texture of the paper detracted from the image, so it was re-proofed and printed to Matt Plus, again using PK ink. It looked just the same from a colour/luminance stand point, but worse from a ‘style’ point because of the zero texture.

Along comes Calumet Museum Satin Matte Natural!

The subtle texture gets me where I wanted to be on that score, and that ever-so-soft luster just makes the colours come to life that tiny bit more, giving me a print variation that I love and hadn’t even envisaged at the time I did the original print.

Ink Type Switching

I have to say at the outset that I do NOT own an R3000 printer – I use wide format Epson printers and so have no commercial need for the 3000 DT format.  But I always advise people looking for a printer to buy one – it’s a stunning machine that punches well above it’s weight based on price point.

My Epson wide format does not hold both black ink types.  Switching entails a rather tedious and highly wasteful process; which I have neither desire or need to embark upon.

But if you have any brand of printer that carries both types on board then I’d highly recommend you to set the black ink type to PK, and turn any auto-switching OFF – that is, set switching to manual.

Right, now the super-pessimist in me shines through!

I’m not a fan of Epson papers on the whole, and there’s a lot more choice and far better quality available from third party suppliers ranging from Photospeed to Hahnemuhle, Canson, Red River and all points in between.

Now third party suppliers in the main will tell you to use one black ink type or the other – or either, and give you the correct media settings (Brilliant – are you reading this??).

But, if you have auto switching enabled, and use Epson paper, the print head sees the paper surface and automatically switches the ink to the ‘supposed’ correct type.  This switching process requires the printer to purge the black ink line and refill it with the ‘correct’ black ink type before printing commences.

Now these figures are the stats quoted from Epson:

Black ink conversion times:

  • Matte to Photo Black approx. 3 min. 30 sec
  • Photo to Matte Black approx. 2 min. sec

Ink used during conversion:

  • Matte to Photo Black approx. 3 ml
  • Photo to Matte Black approx. 1 ml

Now why the times and volumes aren’t the same in both directions is a bit of a mystery to me and doesn’t make sense.  But what is killer is that the carts are only 26 (25.9)ml and around £24 each, so 6 changes of black ink type is going to burn through as good as £25 of ink – and that’s without doing any bloody printing!!!

When ever I demo this printer at a workshop I never use Epson paper, auto switching is OFF and I never get a head sensor warning to tell me to switch ink even if I load Permajet Museum – the head sensor doesn’t warn me about the fact that I’m using PK ink.

Yes the printer could be up the spout, but using a canned PK profile the resulting print would tend to indicate otherwise.

Or something slightly more dark and sinister might be happening – or rather NOT, because I’m not using OEM paper………...What was that I heard you say?  Good gracious me…you might think that but I couldn’t possibly comment!

One thing to bare in mind is this.  For the most part, the majority of print media will work exceptionally well with the PK black ink type – BUT NOT THE OTHER WAY AROUND – you’ve been warned.  If you want to know how the captain of the Exon Valdez felt and be up to your ass in black stuff then go ahead and give it a try, but don’t send the cleaning bills to me!

I did it once years ago with an HP printer – I can still see matte black ink tide marks on the skirting board in my office……it wasn’t pretty! And it screwed the printer up totally.

Using PK on matte media will only effect the D-max and lower the overall contrast a wee bit; unless it’s a very low key image with vast areas of blackish tones in it then for the most part you’d perhaps struggle to notice it.  Sometimes you might even find that the drop in contrast even works to your advantage.

But don’t forget, you might not be using a matte media at all, even though it visually looks like it and says the word matte in the paper name.  If the paper manufacturer supplies a PK and an MK profile for the same paper then save yourself time and money and use the PK profile to soft-proof to AND to control the printer colour management.

Did that answer your question Frank – FRANK – can you hear me Frank??!!


Please consider supporting this blog.

This blog really does need your support. All the information I put on these pages I do freely, but it does involve costs in both time and money.

If you find this post useful and informative please could you help by making a small donation – it would really help me out a lot – whatever you can afford would be gratefully received.

Your donation will help offset the costs of running this blog and so help me to bring you lots more useful and informative content.

Many thanks in advance.


Brilliant Papers from Calumet

Brilliant Papers from Calumet

My thoughts on two papers from the Calumet Brilliant Papers range.

museum Brilliant Papers from Calumet

Brilliant Museum Printing Papers from Calumet

As I CONSTANTLY demonstrate to individuals and groups during workshops and 1to1 tuition days, printing is so damned easy it’s ridiculous.  Provided you get all your “ducks in a row” – and that’s not the hardest thing in the world to do, considering you’ve only got 3 bloody ducks!

How hard can it be???

Notwithstanding the necessity for an accurate monitor profile (duck number 1), the paper and its profile, or colour space if you like, form the back-bone of both “soft-proof” and the final print that spews forth from your printer – they’re ducks 2 and 3 respectively.

When getting someone on the “straight and narrow path to print righteousness” I always find it best practice to make them stick to one paper until they are super-familiar with the process, and begin to appreciate the fact that paper choice is the final step in the creative process.

I never want to confuse folk with custom profiles either – if I can get them onto a paper that comes supplied with a reliable OEM profile which includes the relevant MEDIA SETTINGS for the printer (these are crucial) then my work is done.

One paper with a very accurate OEM profile that has media settings as part of the profile name is Permajet Oyster 271.  A cracking paper for general purpose printing, it’s finish suits most images, and it’s still my go-to paper for prints of general wildlife and natural history subjects.

But it doesn’t suit everything, and landscapes, seascapes, and other styles of fine art imagery are the sorts of images that spring to mind.  It’s paper-white is a little on the cool side for starters – so printing a warm tone image to it increases your soft-proof workload for starters.

So I’m always trying different papers so that I can recommend them to my clients,  but no matter how good I find them, I’ll rarely recommend them if the supplied OEM profile is crap.  With the profiling gear I use I could get a workable custom profile for toilet paper if I had to, but telling someone new to printing that they need to:

  • Spend £1500 on the gear
  • Learn how to use what looks like the most scary software GUI on the planet
  • Waste 1 or 2 sheets of paper and ink printing the test charts (it’s not a waste really but that’s how they’d see it).

isn’t a real option.

But now I’m in love with two papers from Calumet and their Brilliant Papers Museum range.  They are:

  • Brilliant Papers Museum Satin Matte Natural
  • 1 Brilliant Papers from Calumet

    Brilliant Papers Museum Inkjet Paper – Satin Matte Natural

  • Brilliant Papers Museum Silver Gloss Natural
  • 2 Brilliant Papers from Calumet

    Brilliant Papers Museum Inkjet Paper – SilverGloss Natural


Both these papers, in my opinion, are up there with the very best of them.  And, while they cost – size for size – twice as much as something like Permajet Oyster; they are both far more than twice as beneficial to the easy production of fine art landscapes and other images that require a bit more from the printer paper to add the final touch.

I’ve used both papers on the Epson R3000 with the Epson ink set, and on my Epson 4800 that carries a Lyson ink set, and all I can say is that I’m more than impressed, and have no trouble in recommending you give them a go.

On the Epson R3000 I used the “canned profiles” downloadable from Brilliant Papers website HERE  but you need to understand that Brilliant have not exactly been sensible here and have omitted to give you any indication of correct media settings.

I’ve actually been using media settings of WCRW (water colour radiant white) for the Satin Matte Natural on the R3000 and TFAP (textured fine art paper) on the 4800.

For the Silver Gloss Natural the media settings for both printers have been UPPPL (ultra premium photo paper lustre) and results have been superb.

Just in case you don’t understand why media settings need to be set correctly, different papers require, amongst other things, different inking levels from the print head – too much ink and the print will look dark, too little and it’ll look pale and washed out.  There is also the little matter of what’s called “dot gain”.  Some papers have a hard glossy surface, others a more rough and porous one. A nozzle droplet of a particular size might be fine on a gloss paper, but that same size droplet on a fine art rag paper might well ‘bleed’ and spread out like it was on blotting paper.  This bleeding, or dot gain, leads to a reduction in sharpness of fine detail.

So, media settings are important – they ain’t there for the hell of it you know!

The “canned” profiles plot for the Epson R3000 using MK ink for Satin Matte Natural and PK ink for the Silver Gloss Natural (sRGB included for comparison):

Epson R3000 900x800 Brilliant Papers from Calumet

Click to enlarge

And for the 4800:

Epson 4800 900x800 Brilliant Papers from Calumet

Click to enlarge

I swapped the plot colours around by mistake – my bad!

I always used to like the look of images printed on Permajets Fine Art Museum 310, but 90% of the time I felt the texture somehow visually ‘got in the way’.

The texture of Brilliant Papers Museum Satin Matte Natural is not quite so pronounced which means I like it better!

In practical terms the colour space of the paper, though ever so slightly smaller than the Permajet Museum paper, does give you slightly deeper blacks and that tiny bit of extra shadow detail clarity.  All in all, a very good go-to paper, especially for the more monochromatic image such as:

D4R3875 Edit Edit 599x900 Brilliant Papers from Calumet

“The Portal”

The Brilliant Papers Silver Gloss Natural.  I find it difficult to actually describe the finish as “gloss” – it’s more like a very fine grained lustre to be honest.

And the difference between the two papers?  Well, the Silver Gloss just has that little extra contrast in the medium and darker midtones – it’s a bit like adding 8 or 10 points of clarity to an image inside of the Lightroom Dev module.  I’d definitely consider this a great paper for landscape and fine art imagery that contains just that little bit more in terms of colour variation and saturation:

D4R0016 Edit 21 607x900 Brilliant Papers from Calumet

“Stepping Stones to Oblivion”

All in all two very nice papers from the Brilliant Papers range that will be seeing regular use both in my own work, and in my workshops and tuition days; though not exactly budget-priced papers they’re no where near as pricey as some – plus, don’t you think your images are worth it?

And just in case you were wondering; I too was quite surprised at just how well matched the Brilliant canned profiles for the 4800 worked out on my Lyson ink set! I’ve written custom profiles for both of these papers, and there is generally so little difference between the custom and Brilliant profiles (which are really intended for the Epson ink set) that I can’t tell the difference between the prints I’ve done so far – and I’ve done a few!

Though for my own printing I’ll always use my custom icc profiles.


Please consider supporting this blog.

This blog really does need your support. All the information I put on these pages I do freely, but it does involve costs in both time and money.

If you find this post useful and informative please could you help by making a small donation – it would really help me out a lot – whatever you can afford would be gratefully received.

Your donation will help offset the costs of running this blog and so help me to bring you lots more useful and informative content.

Many thanks in advance.


Flash Output Power

Flash output power raises a lot of questions when you are trying to decide how to spend your money.

A lot of people writing on the internet decry the versatility of portable speedlights and their use as studio-type lighting – something which is entirely wrong in my opinion; as there is nothing that can’t be done with them, as long as you have enough of them!

And you don’t have to take my word for it – just go and watch the worlds best exponent of the art, in my opinion anyway – Joe McNally. – then tell me if I’m wrong!

But with a top-of-the-line Nikon SB910 running at £340 and Canons new 600EXRT a cool £400 plus here in the UK, purchasing 10 to 15 of these puppies is a wallet-emptying proposition; though given the cash or sponsorship it’s the way I’d go all day long.

A lot of folk come to me with the same quandary – studio flash heads are a lot more cost-effective; notwithstanding their big limiting factor – lack of portability.

Leaving aside the other problems of many studio-style flash heads, namely lack of TTL and HSS/FP facility (though this can be walked-around on certain models with Pocket Wizards and the dark art of Hypersynch) they do give one big advantage – more photons for your buck.

But just how does one compare the flash output power of one unit/type with another – after all, this is what we want to know:

  • Can I get more light from flash A than I can from flash B
  • How many speedlights do I NOT have to buy if I get studio-style flash head C which costs 1.5x the price of one of my speedlights.

The problem is that manufacturers don’t make it easy to do direct comparisons of flash output power between brands and formats, and they tend to try and confuse the buyer with meaningless numbers and endless amounts of jargon.

Back in the days of manual-everything, we used to use flash in a very simple way using the units Guide Number.

The guide number is usually quoted as being at 100 ISO and at two values, one for metres and one for feet, and we use it with the following equation:

GUIDE No: = Distance x Aperture

So we might see a flash unit has a  guide number quoted as 40/131 at 100 ISO.  This means for example, that at 100 ISO and a flash to subject distance of 2.5 metres or 8.2 feet the correct aperture to use would be:

Guide No: divided by distance – in this case 40/2.5m or 131/8.2ft.

Either way the answer is 16, so we would set the shutter speed to the flash synch speed and the aperture to F16.


Where things used to go a bit pear-shaped was when we introduced any form of output modifier such as a bounce board or diffuser because these spread and smooth the light and so reduce the number of photons falling on the subject by one or two stops.

But TTL flash metering soon put paid to all that grief.

Camera OEM Speedlights

Let’s compare a Nikon SB800 & SB910 – these have 100 ISO guide numbers of 38/125 & 34/112 respectively (published) – that’s right folks, the new one is weaker than the old one.

But by how much?

Well the old SB800 has a guide number that is 11.7% higher than the newer SB910, but what does this mean in terms of exposure value?

At a flash-to-subject distance of 3.4 metres, doing the maths says that our correct aperture would be 38/3.4 and 34/3.4 respectively. So the SB800 would put us at f11 (11.18 to be precise) while the SB910 would give us f10 – that’s an increase of over 1/3rd of a stop using the older unit.

When working with long lenses and wide apertures this extra 1/3rd of a stop gives me just that little bit more depth of field – and folk wonder why I don’t change mine!

Complications & Caveats

Nikon quote the two units above with guide numbers based on the head “zoom feature” being set to 35mm, which gives a fairly wide angle of lighting.  Someone said to me the other day that the new Canon 600EX was twice the power of the Nikon units I’ve already mentioned, simply because Canon quote the guide number for that device as a massive whopping 60!

The world is full of fools………..

Canon, in their infinite wisdom, quote that 60 value at a zoom head setting of 200mm.  The reality is that the guide number of this Canon unit varies between 26 with the zoom head at 20mm and 60 at 200mm – so in other words, give or take a bit, it’s pretty much in the same ball park as the Nikon units previously mentioned.

Canon speedlight naming policy tells you the units MAXIMUM guide number:

  • 600EX = 60 (metres)
  • 580EX = 58 (metres)
  • 550EX = 55 (metres)

The 550 specs also give you zoom length variations:

  • 105mm = 55 (metres)
  • 50mm = 42 (metres)
  • 17mm = 15 (metres)

Canon 600EX vs Nikon SB800 zoom lengths:

  • 105mm = 58 vs 56 (metres)
  • 50mm  = 42 vs 44 (metres)
  • 14mm = 15 vs 17 (metres)

Light leaves a flash unit in a cone of sorts, and the zoom heads on speedlight style units gather this cone of light so it basically matches the angle of view of the lens you are using and results in an efficient distribution of light across the image area – that’s the theory anyway.

Making the cone “tighter” forces the photons released by the flash into a more concentrated area, thus increasing the number falling on the subject and so increasing the overall exposure value.

So when we use guide numbers to compare various flash units we must ensure that we are comparing the units on a level playing field – in other words, the values we use are for the same “cone or reflector angle”.  And if the manufacturers use different reflector angles when assessing their flash guide numbers for promotion to the public, then you guys ‘n gals run the risk of being hood-winked into buying something that ain’t strictly what you thought it was when you ordered it.

So how do speed light style flash units stack up against studio type units?

Notwithstanding the lack of FP/HSS and any TTL metering problems, studio-type flash heads have guide numbers that are usually quoted as being “with standard reflector”.  This standard reflector is something which gathers those photons and shovels them out in a 50-55 degree spread; think “standard lens” on the image diagonal.

Current top end Nikon speed lights (and Canon) have guide numbers of sub 40 at 35mm reflector angles, and those equate to roughly 64 degrees diagonal coverage.  So if we were to “tighten them up” to 50 or 55 degrees we could, as a rough guide, round the guide numbers up to 42m or 44m.

Now we are on a more even playing field.

A Bowens Gemini 500R is quoted by Bowens as having a guide number of 85 with a standard reflector, so let’s be a bit cavalier with the numbers and say that it’s double the guide number of SB800/910 or 580EX etc.

So roughly how many speed lights is this puppy going to be equivalent to in terms of real flash output power ?

Hands up those who think two………….wrong!

This is where everything you thought you knew about exposure turns to shit in front of your very eyes (but not really!), and it’s called the Inverse Square Law.

Inverse Square Law

Now listen folks, this is as simple or as complicated as you care to make it!

When we capture a scene we capture a 2 dimensional plane filled with photons travelling towards us.

When we shine any light on an object we are actually throwing a flat sheet of light at it. This sheet is expanding outwards as it travels towards the subject because the photons in that sheet of light are all diverging.

So, let’s look at something tangible as an analogy – metric paper sizes!

How many sheets of A3 paper fit on a sheet of A2 paper?

That’s right, TWO – we’ve effectively doubled the surface area of the paper.

Now exposure works in stops – and making a 1 stop change in exposure effectively doubles or halves the exposure value depending on which way we’ve made the adjustment.

So moving from A3 to A2 is like making a 1 stop change in exposure; we’ve doubled the surface area of the paper.  BUT – we’ve not doubled the papers physical dimensions.

What paper size is twice the width AND twice the height of A3 – yep, that’s right, A1.

And how many sheets of A3 fit on a sheet of A1 – right again, 4.

So we have quadrupled the papers surface area – in exposure terms that would equate to 2 stops.

Now imagine a projector throwing an image onto a big screen and the screen to projector distance is 4 metres.  We go to the screen and measure the size of the projected image and it’s 1.5 metres by 2 metres.

How big will the image be if we move the projector to 8 metres from the screen?

Answer – 3 metres x 4 metres. (and the brightness of the image will have gone down by 2 stops).

And if we move the projector to 2 metres from the screen the image will be 0.75 metres x 1 metre. (and the brightness of the image will have increased by 2 stops!).

Inverse Square Law, Lights & Distances

Let’s say we have a theoretical flash with a metres guide number of 80.

If the subject is 10 metres from the light we need an aperture of f8 because 80/10 = 8.

If we now move the light to 5 metres from the subject our aperture decrease to 80/5 = f16

Halving the light-to-subject distance means we increase the overall intensity of the light (its effective flash output power) by 2 stops, so we have to reduce our overall exposure by two stops to compensate; otherwise we’ll just end up with 2 stops of over exposure.

And of course if we move the light away to 20 metres from the subject the inverse applies and we effectively reduce the flash output power by two stops and we’ll have to open the aperture up by two stops to avoid under exposure.

But what do we have to do in order to use f16 at 10 metres AND get correct exposure?

Use a flash with a guide number of 160 is what we’d need to do – it really is that simple.


So, how many guide number 45 speed lights would we need to equal one guide number 90 studio flash head in terms of effective flash output power?

Well it isn’t two – oh that we should be so lucky!

If we have two speed lights mounted together their cumulative guide number is equal to the square root of the sum of the squares of their individual guide numbers!

Sounds scary, but the answer is 63 or thereabouts.

But here’s the thing about photo-maths – it usually ends up as something really simple and this is no exception.

If you want to double the guide number you always need 4 identical units.

Do not forget what I’ve said above about published guide numbers – you have to ensure that the values were obtained using equal criteria, and manufacturers sometimes don’t always like to furnish you with the information you need in order to do easy comparisons.

Have they got something to hide – you may think that, but I couldn’t possibly comment!

What really does piss me off the meaningless crap they do furnish you with – watt-second, w/s, watt/sec or if you like Joules values.

The only thing these values do is inform you of the “potential energy” available at the capacitor; it’s no measure of how efficiently the flash tube converts that power into photons – and the photons is ALL we’re really interested in.

Other things such as tube temperature can have dramatic effects on both light output and the colour of that light.


This post has been a bit of a ramble but I’ve tried as best I can to give you a rough guide on how to compare one flash source with another.

Different photographers require different things – if all you want to do is shoot portraits and still life then shutter speeds above 1/250th synch are of little importance in general terms, so access to HSS/AutoFP via speed lights isn’t needed, and normal studio lights would be a far more economical proposition.

But on the other hand 8 speed lights in one bank, and two more banks of 4 speed lights each – all HSS/AutoFP compliant – crikey, the photographic possibilities are endless, and readily achievable – if your bank balance is endless too!

Please consider supporting this blog.

This blog really does need your support. All the information I put on these pages I do freely, but it does involve costs in both time and money.

If you find this post useful and informative please could you help by making a small donation – it would really help me out a lot – whatever you can afford would be gratefully received.

Your donation will help offset the costs of running this blog and so help me to bring you lots more useful and informative content.

Many thanks in advance.